Semi-Supervised Online Kernel Extreme Learning Machine for Multi-Label Data Stream Classification

计算机科学 极限学习机 机器学习 人工智能 水准点(测量) 支持向量机 数据流 半监督学习 多标签分类 核(代数) 标记数据 数据流挖掘 监督学习 数据挖掘 模式识别(心理学) 人工神经网络 数学 地理 组合数学 电信 大地测量学
作者
Shiyuan Qiu,Peipei Li,Xuegang Hu
标识
DOI:10.1109/ijcnn55064.2022.9892701
摘要

Semi-supervised multi-label data stream classification serves a practical yet challenging task since only a small number of labeled instances are available in real streaming environments. However, the mainstream of existing semi-supervised multi-label classification technique is focused on the batch process. Meanwhile, many data stream classification approaches have been proposed, and one of popularly used base models is ELM (extreme learning machine). But only few ELM-based algorithms are proposed for the multi-label data stream classification. Therefore, in this paper, we present a novel Semi-supervised Online Extreme Learning Machine with Kernel function for multi-label data stream classification, called SSO-KELM. Specifically, we firstly introduce the kernel function to output the multi-dimensional vector, for adapting to the multi-label data. Secondly, to make full use of labeled and unlabeled data in a data stream, we derive a novel online semi-supervised ELM algorithm, which can adapt to the stream setting and achieve a higher classification accuracy. Finally, extensive experiments conducted on six benchmark multi-label data sets demonstrate the effectiveness of our approach compared to state-of-the-art approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清晾油完成签到,获得积分10
1秒前
5秒前
variant完成签到,获得积分20
5秒前
赘婿应助坦率的枕头采纳,获得10
5秒前
吴静慧发布了新的文献求助10
6秒前
Sylvia发布了新的文献求助50
6秒前
陈丞澄完成签到,获得积分10
7秒前
8秒前
Ava应助che采纳,获得10
8秒前
蓦然发布了新的文献求助10
9秒前
李健应助负责的方盒采纳,获得10
10秒前
听听不想读啦完成签到 ,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
茶多一点酚完成签到,获得积分10
12秒前
12秒前
可爱的函函应助落后翠柏采纳,获得10
13秒前
悠悠应助奶油布丁采纳,获得10
14秒前
希望天下0贩的0应助蓦然采纳,获得10
15秒前
15秒前
15秒前
烦烦烦发布了新的文献求助10
16秒前
16秒前
我是老大应助qaz采纳,获得10
17秒前
18秒前
18秒前
端庄的香薇完成签到,获得积分10
19秒前
19秒前
云漫山完成签到 ,获得积分10
19秒前
叶帆完成签到,获得积分10
20秒前
桐桐应助3927456843采纳,获得30
20秒前
che发布了新的文献求助10
20秒前
共享精神应助MeetAgainLZH采纳,获得10
21秒前
21秒前
xing发布了新的文献求助10
21秒前
123完成签到 ,获得积分10
21秒前
22秒前
欧贤书发布了新的文献求助10
22秒前
天天快乐应助Gryphon采纳,获得10
23秒前
粗犷的冷霜完成签到,获得积分10
24秒前
小马发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637805
求助须知:如何正确求助?哪些是违规求助? 4744034
关于积分的说明 15000235
捐赠科研通 4795945
什么是DOI,文献DOI怎么找? 2562246
邀请新用户注册赠送积分活动 1521747
关于科研通互助平台的介绍 1481704