Multiscale Label-Free Imaging of Fibrillar Collagen in the Tumor Microenvironment

微尺度化学 细胞外基质 肿瘤微环境 光学相干层析成像 胶原纤维 磁共振成像 材料科学 转移 纳米技术 病理 生物医学工程 癌症 医学 癌症研究 细胞生物学 肿瘤细胞 生物 解剖 放射科 内科学 数学教育 数学
作者
Michael S. Nelson,Yuming Liu,Helen M. Wilson,Bin Li,Iván M. Rosado-Méndez,Jeremy D. Rogers,Walter F. Block,Kevin W. Eliceiri
出处
期刊:Methods in molecular biology 卷期号:: 187-235 被引量:9
标识
DOI:10.1007/978-1-0716-2914-7_13
摘要

With recent advances in cancer therapeutics, there is a great need for improved imaging methods for characterizing cancer onset and progression in a quantitative and actionable way. Collagen, the most abundant extracellular matrix protein in the tumor microenvironment (and the body in general), plays a multifaceted role, both hindering and promoting cancer invasion and progression. Collagen deposition can defend the tumor with immunosuppressive effects, while aligned collagen fiber structures can enable tumor cell migration, aiding invasion and metastasis. Given the complex role of collagen fiber organization and topology, imaging has been a tool of choice to characterize these changes on multiple spatial scales, from the organ and tumor scale to cellular and subcellular level. Macroscale density already aids in the detection and diagnosis of solid cancers, but progress is being made to integrate finer microscale features into the process. Here we review imaging modalities ranging from optical methods of second harmonic generation (SHG), polarized light microscopy (PLM), and optical coherence tomography (OCT) to the medical imaging approaches of ultrasound and magnetic resonance imaging (MRI). These methods have enabled scientists and clinicians to better understand the impact collagen structure has on the tumor environment, at both the bulk scale (density) and microscale (fibrillar structure) levels. We focus on imaging methods with the potential to both examine the collagen structure in as natural a state as possible and still be clinically amenable, with an emphasis on label-free strategies, exploiting intrinsic optical properties of collagen fibers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助SONG采纳,获得10
刚刚
脑洞疼应助茄子蛋采纳,获得10
刚刚
科研通AI2S应助畅畅采纳,获得10
1秒前
1秒前
1秒前
kingwill应助粗暴的鞋垫采纳,获得30
2秒前
小先发布了新的文献求助10
2秒前
2秒前
阿奇应助沉默的早晨采纳,获得20
3秒前
胡壮壮完成签到,获得积分10
3秒前
Lucas应助菜菜采纳,获得10
3秒前
天天快乐应助Jennie采纳,获得10
3秒前
Sodagreen2023发布了新的文献求助10
3秒前
3秒前
3秒前
夏硕发布了新的文献求助10
4秒前
隐形曼青应助小郝采纳,获得10
4秒前
lilililili发布了新的文献求助10
4秒前
学术菜鸡发布了新的文献求助30
4秒前
5秒前
迟大猫应助nn采纳,获得10
6秒前
lgd应助duan采纳,获得10
7秒前
123456789hyb发布了新的文献求助10
7秒前
林松发布了新的文献求助10
8秒前
eleusis发布了新的文献求助10
8秒前
杉杉来吃发布了新的文献求助10
8秒前
唐小刚完成签到,获得积分10
8秒前
9秒前
9秒前
求求科研发布了新的文献求助10
9秒前
熊熊完成签到 ,获得积分10
9秒前
10秒前
tesla发布了新的文献求助10
10秒前
11秒前
wyh99完成签到,获得积分10
11秒前
Pomelo完成签到,获得积分10
12秒前
12秒前
共享精神应助夏硕采纳,获得10
12秒前
Ava应助yu采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3552796
求助须知:如何正确求助?哪些是违规求助? 3128883
关于积分的说明 9379843
捐赠科研通 2828004
什么是DOI,文献DOI怎么找? 1554841
邀请新用户注册赠送积分活动 725605
科研通“疑难数据库(出版商)”最低求助积分说明 715056