微尺度化学
细胞外基质
肿瘤微环境
光学相干层析成像
胶原纤维
磁共振成像
材料科学
转移
纳米技术
病理
生物医学工程
癌症
医学
癌症研究
细胞生物学
肿瘤细胞
生物
解剖
放射科
内科学
数学教育
数学
作者
Michael S. Nelson,Yuming Liu,Helen M. Wilson,Bin Li,Iván M. Rosado-Méndez,Jeremy D. Rogers,Walter F. Block,Kevin W. Eliceiri
标识
DOI:10.1007/978-1-0716-2914-7_13
摘要
With recent advances in cancer therapeutics, there is a great need for improved imaging methods for characterizing cancer onset and progression in a quantitative and actionable way. Collagen, the most abundant extracellular matrix protein in the tumor microenvironment (and the body in general), plays a multifaceted role, both hindering and promoting cancer invasion and progression. Collagen deposition can defend the tumor with immunosuppressive effects, while aligned collagen fiber structures can enable tumor cell migration, aiding invasion and metastasis. Given the complex role of collagen fiber organization and topology, imaging has been a tool of choice to characterize these changes on multiple spatial scales, from the organ and tumor scale to cellular and subcellular level. Macroscale density already aids in the detection and diagnosis of solid cancers, but progress is being made to integrate finer microscale features into the process. Here we review imaging modalities ranging from optical methods of second harmonic generation (SHG), polarized light microscopy (PLM), and optical coherence tomography (OCT) to the medical imaging approaches of ultrasound and magnetic resonance imaging (MRI). These methods have enabled scientists and clinicians to better understand the impact collagen structure has on the tumor environment, at both the bulk scale (density) and microscale (fibrillar structure) levels. We focus on imaging methods with the potential to both examine the collagen structure in as natural a state as possible and still be clinically amenable, with an emphasis on label-free strategies, exploiting intrinsic optical properties of collagen fibers.
科研通智能强力驱动
Strongly Powered by AbleSci AI