O098 A systematic review of the use of artificial intelligence for image analysis in total hip and total knee arthroplasty

医学 植入 关节置换术 射线照相术 梅德林 外科 人工智能 计算机科学 政治学 法学
作者
B Gurung,Perry Liu,Peter Harris,Keith Tucker,David H. Sochart,Deiary F. Kader,Richard E. Field,Vipin Asopa
出处
期刊:British Journal of Surgery [Oxford University Press]
卷期号:109 (Supplement_4)
标识
DOI:10.1093/bjs/znac242.098
摘要

Abstract Introduction Total hip and knee arthroplasty are common orthopaedic procedures that require post-operative radiographs to confirm implant positioning and identify complications. Artificial intelligence (AI) technology has the potential to automate image analysis. This systematic review reports on how AI-based technologies are currently being used and their accuracy in image analysis following THA and TKA. Methods EMBASE, Medline and PubMed libraries were systematically searched for articles published until 15/09/2021 using terms related to “x-ray analysis”, “total hip/knee arthroplasty”, and “AI”. The review was performed according to the PRISMA guidelines (PROSPERO#CRD42021276876). Study quality was assessed using a modified MINORS tool. AI performance was reported using the area under the curve (AUC) and accuracy. Results Of the 455 studies identified, 12 were included: nine reported implant identification, three described prediction of implant failure and three compared AI performance with orthopaedic surgeons. AI-based implant identification was precise (AUC 0.992–1) and most algorithms reported accuracy >90%. Two of these studies reported AI performance to be similar or superior to human experts. AI prediction of dislocation risk following THA was acceptable (AUC 76.67), diagnosis of hip implant loosening was good (accuracy 88.3%) and measurement of acetabular angles on post-operative x-rays was comparable to humans (Cohen's kappa 0.76–1.00). Conclusion AI technology can be trained to identify implant models on post-operative x-rays with a performance that is comparable to that of human experts. However, the technology requires further development to enable analysis of other post-operative radiographic features following arthroplasty surgery that could improve patient care. Take-home message Artificial intelligence image analysis through deep learning can classify hip and knee implants, and measure malposition and detect features of loosening of hip implants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助科研通管家采纳,获得10
刚刚
顾矜应助科研通管家采纳,获得10
刚刚
Astronaut完成签到,获得积分10
刚刚
呵呵应助科研通管家采纳,获得10
刚刚
搜集达人应助科研通管家采纳,获得10
刚刚
深情安青应助科研通管家采纳,获得30
刚刚
科研通AI6应助科研通管家采纳,获得150
刚刚
呵呵应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
尘林完成签到,获得积分10
1秒前
zzz发布了新的文献求助10
1秒前
1秒前
123完成签到,获得积分10
2秒前
2秒前
潆星发布了新的文献求助10
2秒前
2秒前
小张发布了新的文献求助10
2秒前
xzlijingjing完成签到 ,获得积分10
2秒前
亚黑发布了新的文献求助10
3秒前
平淡晓博发布了新的文献求助10
3秒前
英俊的铭应助悲凉的素采纳,获得10
3秒前
星辰大海应助euphoria采纳,获得10
4秒前
王俊1314完成签到 ,获得积分10
4秒前
科科克尔克完成签到,获得积分10
4秒前
4秒前
没所谓完成签到,获得积分10
5秒前
5秒前
pp完成签到 ,获得积分10
5秒前
深情安青应助lc采纳,获得10
5秒前
Hello应助xdc采纳,获得10
6秒前
阿may完成签到,获得积分10
6秒前
等风等你完成签到,获得积分10
6秒前
淡淡冬卉发布了新的文献求助10
6秒前
6秒前
6秒前
靖委完成签到,获得积分10
6秒前
7秒前
流云完成签到,获得积分10
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5402308
求助须知:如何正确求助?哪些是违规求助? 4520855
关于积分的说明 14082461
捐赠科研通 4434876
什么是DOI,文献DOI怎么找? 2434481
邀请新用户注册赠送积分活动 1426661
关于科研通互助平台的介绍 1405415