O098 A systematic review of the use of artificial intelligence for image analysis in total hip and total knee arthroplasty

医学 植入 关节置换术 射线照相术 梅德林 外科 人工智能 计算机科学 政治学 法学
作者
B Gurung,Perry Liu,Peter Harris,Keith Tucker,David H. Sochart,Deiary F. Kader,Richard E. Field,Vipin Asopa
出处
期刊:British Journal of Surgery [Oxford University Press]
卷期号:109 (Supplement_4)
标识
DOI:10.1093/bjs/znac242.098
摘要

Abstract Introduction Total hip and knee arthroplasty are common orthopaedic procedures that require post-operative radiographs to confirm implant positioning and identify complications. Artificial intelligence (AI) technology has the potential to automate image analysis. This systematic review reports on how AI-based technologies are currently being used and their accuracy in image analysis following THA and TKA. Methods EMBASE, Medline and PubMed libraries were systematically searched for articles published until 15/09/2021 using terms related to “x-ray analysis”, “total hip/knee arthroplasty”, and “AI”. The review was performed according to the PRISMA guidelines (PROSPERO#CRD42021276876). Study quality was assessed using a modified MINORS tool. AI performance was reported using the area under the curve (AUC) and accuracy. Results Of the 455 studies identified, 12 were included: nine reported implant identification, three described prediction of implant failure and three compared AI performance with orthopaedic surgeons. AI-based implant identification was precise (AUC 0.992–1) and most algorithms reported accuracy >90%. Two of these studies reported AI performance to be similar or superior to human experts. AI prediction of dislocation risk following THA was acceptable (AUC 76.67), diagnosis of hip implant loosening was good (accuracy 88.3%) and measurement of acetabular angles on post-operative x-rays was comparable to humans (Cohen's kappa 0.76–1.00). Conclusion AI technology can be trained to identify implant models on post-operative x-rays with a performance that is comparable to that of human experts. However, the technology requires further development to enable analysis of other post-operative radiographic features following arthroplasty surgery that could improve patient care. Take-home message Artificial intelligence image analysis through deep learning can classify hip and knee implants, and measure malposition and detect features of loosening of hip implants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lx完成签到,获得积分10
刚刚
qianci2009完成签到,获得积分0
刚刚
yqq完成签到 ,获得积分10
2秒前
养猪大户完成签到 ,获得积分10
6秒前
Docline完成签到,获得积分10
7秒前
车秋寒完成签到,获得积分10
7秒前
齐欢完成签到,获得积分10
8秒前
浮游应助murraya采纳,获得10
9秒前
李子潭应助铁风筝芳芳采纳,获得40
11秒前
浮游应助侯笑笑采纳,获得10
15秒前
Criminology34应助xqh采纳,获得10
16秒前
你我的共同完成签到 ,获得积分10
22秒前
Yi羿完成签到 ,获得积分10
23秒前
mmm4完成签到 ,获得积分10
23秒前
李爱国应助murraya采纳,获得10
30秒前
wakkkkk完成签到 ,获得积分10
36秒前
直率若烟完成签到 ,获得积分10
37秒前
666666完成签到,获得积分10
38秒前
ESC惠子子子子子完成签到 ,获得积分10
40秒前
害羞的雁易完成签到 ,获得积分10
41秒前
zj完成签到 ,获得积分20
42秒前
45秒前
语恒完成签到,获得积分10
46秒前
要减肥的蘑菇完成签到 ,获得积分10
47秒前
50秒前
mm完成签到 ,获得积分10
54秒前
思源应助o原来是草莓吖采纳,获得10
56秒前
dahong完成签到 ,获得积分10
56秒前
58秒前
woshibyu完成签到 ,获得积分10
59秒前
哈哈哈发布了新的文献求助10
1分钟前
留胡子的松完成签到 ,获得积分10
1分钟前
1分钟前
高高菠萝完成签到 ,获得积分10
1分钟前
xqh完成签到,获得积分10
1分钟前
小井盖完成签到 ,获得积分10
1分钟前
Alvin完成签到 ,获得积分10
1分钟前
1分钟前
骄傲慕尼黑完成签到,获得积分10
1分钟前
英吉利25发布了新的文献求助10
1分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertebrate Palaeontology, 5th Edition 530
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5347556
求助须知:如何正确求助?哪些是违规求助? 4481793
关于积分的说明 13948128
捐赠科研通 4380137
什么是DOI,文献DOI怎么找? 2406791
邀请新用户注册赠送积分活动 1399340
关于科研通互助平台的介绍 1372500