Dynamic differential entropy and brain connectivity features based EEG emotion recognition

脑电图 模式识别(心理学) 计算机科学 人工智能 微分熵 熵(时间箭头) 差速器(机械装置) 语音识别 传递熵 神经科学 心理学 最大熵原理 物理 量子力学 热力学
作者
Fa Zheng,Bin Hu,Xiangwei Zheng,Cun Ji,Ji Bian,Xiaomei Yu
出处
期刊:International Journal of Intelligent Systems [Wiley]
卷期号:37 (12): 12511-12533 被引量:8
标识
DOI:10.1002/int.23096
摘要

Emotion recognition has become a research focus in the brain–computer interface and cognitive neuroscience. Electroencephalogram (EEG) is employed for its advantages as accurate, objective, and noninvasive nature. However, many existing research only focus on extracting the time and frequency domain features of the EEG signals while failing to utilize the dynamic temporal changes and the positional relationships between different electrode channels. To fill this gap, we develop the dynamic differential entropy and brain connectivity features based EEG emotion recognition using linear graph convolutional network named DDELGCN. First, the dynamic differential entropy feature which represents the frequency domain feature as well as time domain feature is extracted based on the traditional differential entropy feature. Second, brain connectivity matrices are constructed by calculating the Pearson correlation coefficient, phase-locked value and transfer entropy, and then are used to denote the connectivity features of all electrode combinations. Finally, a linear graph convolutional network is customized and applied to aggregate the features from total electrode combinations and then classifies the emotional states, which consists of five layers, namely, an input layer, two linear graph convolutional layers, a fully connected layer, and a softmax layer. Extensive experiments show that the accuracies in the valence and arousal dimensions reach 90.88% and 91.13%, and the precision reaches 96.66% and 97.02% on the DEAP dataset, respectively. On the SEED dataset, the accuracy and precision reach 91.56% and 97.38%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坨坨西州发布了新的文献求助10
1秒前
彬彬发布了新的文献求助10
1秒前
大模型应助Abao采纳,获得10
1秒前
sfw驳回了苏照杭应助
2秒前
dingdong发布了新的文献求助10
2秒前
别拖延了要毕业啊完成签到,获得积分10
3秒前
3秒前
3秒前
Rrr发布了新的文献求助10
3秒前
dingdong发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
5秒前
6秒前
yuan发布了新的文献求助10
6秒前
7秒前
cc完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
8秒前
一一发布了新的文献求助10
8秒前
领导范儿应助Chridy采纳,获得10
8秒前
9秒前
凤凰山发布了新的文献求助10
9秒前
9秒前
孔雨珍发布了新的文献求助10
9秒前
淡定的思松应助通~采纳,获得10
10秒前
10秒前
明亮的八宝粥完成签到,获得积分10
10秒前
mayungui发布了新的文献求助10
10秒前
大型海狮完成签到,获得积分10
10秒前
搜集达人应助科研菜鸟采纳,获得10
11秒前
雨天有伞完成签到,获得积分10
11秒前
蕾子发布了新的文献求助10
11秒前
11秒前
zhui发布了新的文献求助10
11秒前
wanci应助jxcandice采纳,获得10
11秒前
factor发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794