亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Domain generalization via adversarial out-domain augmentation for remaining useful life prediction of bearings under unseen conditions

计算机科学 人工智能 正规化(语言学) 一般化 领域(数学分析) 鉴别器 机器学习 对抗制 发电机(电路理论) 预言 域适应 一致性(知识库) 数据挖掘 数学 分类器(UML) 物理 数学分析 功率(物理) 探测器 电信 量子力学
作者
Yifei Ding,Minping Jia,Yudong Cao,Peng Ding,Xiaoli Zhao,Chi-Guhn Lee
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:261: 110199-110199 被引量:52
标识
DOI:10.1016/j.knosys.2022.110199
摘要

Since classical deep learning (DL) techniques are hungry for massive data and suffer from domain shift, domain adaptation (DA) methods are broadly adopted in prognostics and health management (PHM) to align source and target domains. However, DA relies on target datasets collected in advance, which are not always available in practice. In this paper, a domain generalization (DG) approach, which learns from multiple source domains and generalizes well to unseen domains, is introduced for remaining useful life (RUL) prediction of bearings under unseen operating conditions. Specifically, we propose an adversarial out-domain augmentation (AOA) framework to generate pseudo-domains, thereby increasing the diversity of available samples. Hence, a generator is trained in an adversarial manner to generate augmented pseudo-domains by maximizing the domain discrepancy of the latent representations. In addition, we add manifold and semantic regularization to its objective function to ensure the consistency of the pseudo-domains. Trained with these available domains, a task predictor can improve the generalization in inaccessible target domain. Based on this, we provide a specific implementation of AOA-based RUL prediction for DG and validate its effectiveness and superiority using experimental datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
20秒前
25秒前
安年完成签到 ,获得积分10
34秒前
57秒前
汉堡包应助王王碎冰冰采纳,获得10
1分钟前
1分钟前
555557发布了新的文献求助10
1分钟前
1分钟前
1分钟前
2分钟前
555557完成签到,获得积分10
2分钟前
2分钟前
2分钟前
王王碎冰冰关注了科研通微信公众号
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
天天快乐应助111采纳,获得20
3分钟前
FJXTY发布了新的文献求助10
3分钟前
3分钟前
3分钟前
111发布了新的文献求助20
3分钟前
bkagyin应助FJXTY采纳,获得10
3分钟前
牛黄完成签到 ,获得积分10
3分钟前
彭于晏应助迅速的岩采纳,获得10
3分钟前
3分钟前
3分钟前
赵赵发布了新的文献求助10
3分钟前
3分钟前
迅速的岩发布了新的文献求助10
4分钟前
赵赵完成签到,获得积分20
4分钟前
Willow完成签到,获得积分10
4分钟前
JamesPei应助赵赵采纳,获得10
4分钟前
研友_VZG7GZ应助轻松凌柏采纳,获得10
4分钟前
4分钟前
符寄云发布了新的文献求助10
4分钟前
充电宝应助yihuifa采纳,获得10
4分钟前
斯文败类应助符寄云采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482463
求助须知:如何正确求助?哪些是违规求助? 4583236
关于积分的说明 14389049
捐赠科研通 4512329
什么是DOI,文献DOI怎么找? 2472833
邀请新用户注册赠送积分活动 1459053
关于科研通互助平台的介绍 1432553