Enhanced energy harvesting performance in lead-free multi-layer piezoelectric composites with a highly aligned pore structure

材料科学 压电 能量收集 复合材料 功勋 压电系数 纳米发生器 多孔性 功率密度 光电子学 功率(物理) 量子力学 物理
作者
Mingyang Yan,Shengwen Liu,Qianqian Xu,Zhida Xiao,Xiaoyan Yuan,Kechao Zhou,Dou Zhang,Qingping Wang,Chris Bowen,Junwen Zhong,Yan Zhang
出处
期刊:Nano Energy [Elsevier]
卷期号:106: 108096-108096 被引量:2
标识
DOI:10.1016/j.nanoen.2022.108096
摘要

The harvesting of mechanical energy from our living environment via piezoelectric energy harvesters to provide power for next generation wearable electronic devices and sensors has attracted significant interest in recent years. Among the range of available piezoelectric materials, porous piezoelectric ceramics exhibit potential for both sensing and energy harvesting applications due to their reduced relative permittivity and enhanced piezoelectric sensing and energy harvesting figures of merit. Despite these developments, the low output power density and the lack of optimized structural design continues to restrict their application. Here, to overcome these challenges, a lead-free multi-layer porous piezoelectric composite energy harvester with a highly aligned pore structure and three-dimensional intercalation electrodes is proposed, fabricated and characterized. The effect of material structure and multi-layer configuration of the porous piezoelectric ceramic on the dielectric properties, piezoelectric response and energy harvesting performance was investigated in detail. Since the relative permittivity is significantly reduced due to the introduction of aligned porosity within the multi-layer structure, the piezoelectric voltage coefficient, energy harvesting figure of merit and output power are greatly enhanced. The multi-layer porous piezoelectric composite energy harvester is shown to generate a maximum output current of 80 μA, with a peak power density of 209 μW cm−2, which is significantly higher than other porous piezoelectric materials reported to date. Moreover, the generated power can charge a 10 μF capacitor from 0 V to 4.0 V in 150 s. This work therefore provides a new strategy for the design and manufacture of porous piezoelectric materials for piezoelectric sensing and energy harvesting applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
頑皮燕姿完成签到,获得积分10
刚刚
刚刚
丁德乐可发布了新的文献求助10
1秒前
Minkslion完成签到,获得积分10
1秒前
於松完成签到,获得积分10
1秒前
1秒前
yyyy发布了新的文献求助10
2秒前
稳重无剑完成签到,获得积分10
3秒前
wuha完成签到,获得积分10
3秒前
3秒前
欢喜从霜完成签到,获得积分10
4秒前
Orange应助LiShin采纳,获得10
4秒前
4秒前
欣慰友梅完成签到,获得积分10
4秒前
5秒前
llllllll发布了新的文献求助10
5秒前
5秒前
5秒前
CC完成签到,获得积分10
5秒前
wwuu发布了新的文献求助10
6秒前
shenyanlei发布了新的文献求助10
6秒前
一汁蟹发布了新的文献求助20
7秒前
大个应助绿麦盲区采纳,获得10
7秒前
雨齐完成签到,获得积分10
7秒前
茶艺如何发布了新的文献求助10
7秒前
7秒前
kk完成签到,获得积分10
8秒前
8秒前
123发布了新的文献求助10
8秒前
yyyy完成签到,获得积分10
9秒前
好好学习天天向上完成签到,获得积分10
9秒前
欣慰友梅发布了新的文献求助10
9秒前
9秒前
10秒前
Akim应助易伊澤采纳,获得10
10秒前
格局太小完成签到,获得积分10
10秒前
10秒前
尔云完成签到,获得积分10
11秒前
传奇3应助GGZ采纳,获得10
11秒前
我瞎蒙发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762