亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Alzheimer’s disease status can be predicted using a novel fractal‐based metric computed from resting‐state EEG

痴呆 脑电图 静息状态功能磁共振成像 阿尔茨海默病 听力学 血管性痴呆 心理学 人工智能 医学 疾病 神经科学 计算机科学 病理
作者
Geoffrey Brookshire,Yunan Wu,Colin Quirk,Spencer Gerrol,David A. Merrill,Richard J. Caselli,Ché Lucero
出处
期刊:Alzheimers & Dementia [Wiley]
卷期号:18 (S5)
标识
DOI:10.1002/alz.067509
摘要

Abstract Background Alzheimer’s disease (AD) lacks a fast, easy, reliable, and inexpensive method of diagnosis. Currently, diagnosis is based on time‐consuming behavioral tests and the exclusion of other potential causes of impairment. Several biomarkers show good or promising diagnostic performance (e.g. CSF, tau PET, MRI, blood), but are either expensive, invasive, or still in development and while some can detect preclinical disease stages, all appear slow to change relative to the rate of cognitive decline. Here we develop a prototype diagnostic classifier based on novel metrics of brain activity in resting state electroencephalography (EEG) that correlates well with mental status. Method Archival resting‐state EEG recordings of older adults (N=248) came from a memory clinic and university‐based clinic with a range of clinical diagnoses including subjective cognitive impairment (SCI), mild cognitive impairment (MCI), and dementia, representing AD, vascular dementia, and Lewy body dementia, TBI, and depression. We developed XGBoost classifiers to detect AD using EEG, age, and sex under increasingly challenging conditions. We computed metrics of periodic and aperiodic brain activity using the FOOOF algorithm. Furthermore, we developed a novel technique called [Banded Fractal Variability], which yields a set of features based on fluctuations in the fractal dimension within canonical frequency bands. We trained classifiers using cross‐validation to avoid overfitting during hyperparameter selection. Result Along with ROCAUC, we report an optimal sensitivity, specificity, and accuracy for the point on the ROC curve that maximizes Youden’s j . The classification tasks were healthy vs. probable AD (ROCAUC = 98%, sensitivity = 90%, specificity = 99%, accuracy = 96%), SCI vs. mild AD (ROCAUC = 89%, sensitivity = 76%, specificity = 87%, accuracy = 84%), and AD vs. other pathologies (no AD diagnosis) in MCI and dementia patients (ROCAUC = 82%, sensitivity = 72%, specificity = 87%, accuracy = 80%). All ROCAUC values were stronger than would be expected by chance ( p s < 0.001). Conclusion These preliminary results suggest that AD could be diagnosed in the clinic on the basis of machine‐learning classifiers and resting‐state EEG. Furthermore, they demonstrate that [Banded Fractal Variability] carries clinically‐relevant information about AD.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
11秒前
12秒前
13秒前
20秒前
25秒前
41秒前
47秒前
56秒前
1分钟前
1分钟前
陈陈陈发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
哈哈完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
dalong完成签到,获得积分10
1分钟前
1分钟前
1分钟前
SPUwangshunfeng完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
有人给big龙的求助进行了留言
2分钟前
2分钟前
2分钟前
2分钟前
自信号厂完成签到 ,获得积分10
2分钟前
仙女完成签到 ,获得积分10
3分钟前
杳鸢应助有人采纳,获得10
3分钟前
3分钟前
3分钟前
情怀应助科研通管家采纳,获得10
3分钟前
3分钟前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 970
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
Forensic Chemistry 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3393035
求助须知:如何正确求助?哪些是违规求助? 3003402
关于积分的说明 8809183
捐赠科研通 2690204
什么是DOI,文献DOI怎么找? 1473526
科研通“疑难数据库(出版商)”最低求助积分说明 681603
邀请新用户注册赠送积分活动 674550