Transformers in medical imaging: A survey

人工智能 计算机科学 医学影像学 计算机视觉 医学物理学 模式识别(心理学) 医学
作者
Fahad Shamshad,Salman Khan,Syed Waqas Zamir,Muhammad Haris Khan,Munawar Hayat,Fahad Shahbaz Khan,Huazhu Fu
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:88: 102802-102802 被引量:417
标识
DOI:10.1016/j.media.2023.102802
摘要

Following unprecedented success on the natural language tasks, Transformers have been successfully applied to several computer vision problems, achieving state-of-the-art results and prompting researchers to reconsider the supremacy of convolutional neural networks (CNNs) as de facto operators. Capitalizing on these advances in computer vision, the medical imaging field has also witnessed growing interest for Transformers that can capture global context compared to CNNs with local receptive fields. Inspired from this transition, in this survey, we attempt to provide a comprehensive review of the applications of Transformers in medical imaging covering various aspects, ranging from recently proposed architectural designs to unsolved issues. Specifically, we survey the use of Transformers in medical image segmentation, detection, classification, restoration, synthesis, registration, clinical report generation, and other tasks. In particular, for each of these applications, we develop taxonomy, identify application-specific challenges as well as provide insights to solve them, and highlight recent trends. Further, we provide a critical discussion of the field's current state as a whole, including the identification of key challenges, open problems, and outlining promising future directions. We hope this survey will ignite further interest in the community and provide researchers with an up-to-date reference regarding applications of Transformer models in medical imaging. Finally, to cope with the rapid development in this field, we intend to regularly update the relevant latest papers and their open-source implementations at https://github.com/fahadshamshad/awesome-transformers-in-medical-imaging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
神威公瑾完成签到,获得积分10
刚刚
lalala发布了新的文献求助10
刚刚
刚刚
王富贵回来了完成签到,获得积分20
1秒前
1秒前
顾矜应助坚强的孤兰采纳,获得10
1秒前
爱打篮球的坤坤完成签到,获得积分10
2秒前
2秒前
2秒前
syl应助youhao6a采纳,获得10
2秒前
852应助KY Mr.WANG采纳,获得10
2秒前
乐乐应助怡然若雁采纳,获得10
2秒前
3秒前
3秒前
Zzzhu完成签到,获得积分10
3秒前
cck发布了新的文献求助10
3秒前
CodeCraft应助yyyq0721采纳,获得10
4秒前
4秒前
Kevin完成签到,获得积分10
4秒前
NexusExplorer应助郝宝真采纳,获得10
5秒前
5秒前
Owen应助wang采纳,获得10
5秒前
zyinger发布了新的文献求助10
5秒前
5秒前
6秒前
微笑旭尧完成签到,获得积分20
7秒前
稳重醉香发布了新的文献求助10
7秒前
飞奔的wex完成签到,获得积分10
7秒前
bkagyin应助天真香烟采纳,获得10
7秒前
Kayla完成签到,获得积分10
7秒前
8秒前
善良翠彤发布了新的文献求助10
8秒前
qy完成签到,获得积分10
8秒前
小冉发布了新的文献求助10
8秒前
8秒前
加菲发布了新的文献求助10
8秒前
8秒前
我午饭呢完成签到,获得积分10
8秒前
zhangpei关注了科研通微信公众号
9秒前
Robbins发布了新的文献求助10
9秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3169709
求助须知:如何正确求助?哪些是违规求助? 2820854
关于积分的说明 7932432
捐赠科研通 2481185
什么是DOI,文献DOI怎么找? 1321712
科研通“疑难数据库(出版商)”最低求助积分说明 633340
版权声明 602561