辅助
材料科学
超材料
屈曲
变形(气象学)
平面(几何)
可伸缩电子设备
复合材料
结构工程
软机器人
机械工程
纳米技术
计算机科学
数码产品
光电子学
人工智能
几何学
数学
机器人
工程类
电气工程
作者
Chen Du,Yiqiang Wang,Zhan Kang
标识
DOI:10.1021/acsami.3c00946
摘要
Auxetic kirigami metamaterials (KMs) attain negative Poisson's ratios with periodic slender cuts on thin sheets. The existing thin auxetic KMs forfeit auxeticity under large tensions because their auxeticity mainly arises from in-plane deformation, but out-of-plane buckling could arise to cause large deviations, and thicker KMs would suffer from stress failure. This paper proposes a novel family of KMs that can realize and retain auxeticity for up to 0.50 applied strains by fully exploiting out-of-plane buckling in the design model. Numerical and experimental results show that the designed KMs possess unique properties that are not exhibited by existing KMs, including a wide range of negative Poisson's ratios with designable variation modes under different applied strains, sheet thickness-insensitive auxeticity, and excellent shape recoverability. A potential application is exemplified with a scenario that they are designed as a stretchable display without image distortions under large tensions. The proposed auxetic KMs open new opportunities for the design of specific functional devices in areas of compliant robotics, bio-medical devices, and flexible electronics.
科研通智能强力驱动
Strongly Powered by AbleSci AI