A machine learning-based diagnosis modelling of type 2 diabetes mellitus with environmental metal exposure

随机森林 特征选择 2型糖尿病 计算机科学 梯度升压 人工智能 集成学习 Boosting(机器学习) 机器学习 统计 医学 糖尿病 数学 内分泌学
作者
Min Zhao,Jin W,Wenzhi Qin,Xin Huang,Guangdi Chen,Xinyuan Zhao
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:235: 107537-107537 被引量:23
标识
DOI:10.1016/j.cmpb.2023.107537
摘要

Increasing and compelling evidence has been proved that urinary and dietary metal exposure are underappreciated but potentially modifiable biomarkers for type 2 diabetes mellitus (T2DM). The aims of this study were (1) to identify the key potential biomarkers which contributed to T2DM with effective and parsimonious features and (2) to assess the utility of baseline variables and metal exposure in the diagnosis of T2DM.Based on the National Health and Nutrition Examination Survey (NHANES), we selected 9822 screening records with 82 significant variables covering demographics, lifestyle, anthropometric measures, diet and metal exposure for this study. Combining extreme gradient boosting (XGBoost), random forest and light gradient boosting machine (lightGBM), a soft voting ensemble model was proposed to measure the importance of 82 features. With this soft voting ensemble model and variance inflation factor (VIF), strong multicollinear features with low importance scores were further removed from candidate biomarkers. Then, a soft voting ensemble classifier was adopted to demonstrate the efficiency of the proposed feature selection method.With the novel feature selection method, 12 baseline variables and 3 metal variables were selected to detect patients at risk for T2DM in our study. For metal variables, the dietary copper (Cu), urinary cadmium (Cd) and urinary mercury (Hg) metals were selected as the most remarkable metal exposure and the corresponding P-values were all less than 0.05. In a classification model of T2DM with 12 baseline biomarkers, the addition of 3 metal exposure improved the classification accuracy of T2DM from a traditional area under the curve (AUC) 0.792 of the receiver operating characteristic (ROC) to an AUC 0.847.This was the first demonstration of T2DM classification with machine learning under urinary and dietary metal exposure. Improved prediction precision illustrated the effectiveness of the proposed machine learning-based diagnosis model facilitated lifestyle/dietary intervention for T2DM prevention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
稳重盼夏完成签到,获得积分10
2秒前
活ni的pig完成签到 ,获得积分10
3秒前
Akim应助snjzsj采纳,获得10
5秒前
6秒前
含糊的泥猴桃完成签到 ,获得积分10
7秒前
爆米花应助周围采纳,获得30
9秒前
Thea完成签到,获得积分10
10秒前
吴倩发布了新的文献求助10
11秒前
14秒前
核桃发布了新的文献求助30
17秒前
18秒前
Yangpc发布了新的文献求助10
18秒前
鲜艳的访风完成签到,获得积分10
19秒前
21秒前
21秒前
熊猫发布了新的文献求助10
23秒前
爆米花应助off采纳,获得10
23秒前
常乐长安发布了新的文献求助10
24秒前
hy完成签到 ,获得积分10
25秒前
玉yu完成签到 ,获得积分10
25秒前
shusen完成签到,获得积分10
26秒前
26秒前
28秒前
仁爱山彤完成签到 ,获得积分10
30秒前
杨诗婕完成签到 ,获得积分10
30秒前
31秒前
stanley发布了新的文献求助10
32秒前
科研通AI5应助hhh采纳,获得10
33秒前
Memory发布了新的文献求助30
33秒前
量子星尘发布了新的文献求助10
33秒前
33秒前
34秒前
GHOMON完成签到,获得积分10
35秒前
35秒前
36秒前
37秒前
安详的白云完成签到 ,获得积分10
39秒前
39秒前
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4586386
求助须知:如何正确求助?哪些是违规求助? 4002819
关于积分的说明 12391220
捐赠科研通 3678978
什么是DOI,文献DOI怎么找? 2027763
邀请新用户注册赠送积分活动 1061227
科研通“疑难数据库(出版商)”最低求助积分说明 947598