A machine learning-based diagnosis modelling of type 2 diabetes mellitus with environmental metal exposure

随机森林 特征选择 2型糖尿病 计算机科学 梯度升压 人工智能 集成学习 Boosting(机器学习) 机器学习 统计 医学 糖尿病 数学 内分泌学
作者
Min Zhao,Jin W,Wenzhi Qin,Xin Huang,Guangdi Chen,Xinyuan Zhao
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:235: 107537-107537 被引量:14
标识
DOI:10.1016/j.cmpb.2023.107537
摘要

Increasing and compelling evidence has been proved that urinary and dietary metal exposure are underappreciated but potentially modifiable biomarkers for type 2 diabetes mellitus (T2DM). The aims of this study were (1) to identify the key potential biomarkers which contributed to T2DM with effective and parsimonious features and (2) to assess the utility of baseline variables and metal exposure in the diagnosis of T2DM.Based on the National Health and Nutrition Examination Survey (NHANES), we selected 9822 screening records with 82 significant variables covering demographics, lifestyle, anthropometric measures, diet and metal exposure for this study. Combining extreme gradient boosting (XGBoost), random forest and light gradient boosting machine (lightGBM), a soft voting ensemble model was proposed to measure the importance of 82 features. With this soft voting ensemble model and variance inflation factor (VIF), strong multicollinear features with low importance scores were further removed from candidate biomarkers. Then, a soft voting ensemble classifier was adopted to demonstrate the efficiency of the proposed feature selection method.With the novel feature selection method, 12 baseline variables and 3 metal variables were selected to detect patients at risk for T2DM in our study. For metal variables, the dietary copper (Cu), urinary cadmium (Cd) and urinary mercury (Hg) metals were selected as the most remarkable metal exposure and the corresponding P-values were all less than 0.05. In a classification model of T2DM with 12 baseline biomarkers, the addition of 3 metal exposure improved the classification accuracy of T2DM from a traditional area under the curve (AUC) 0.792 of the receiver operating characteristic (ROC) to an AUC 0.847.This was the first demonstration of T2DM classification with machine learning under urinary and dietary metal exposure. Improved prediction precision illustrated the effectiveness of the proposed machine learning-based diagnosis model facilitated lifestyle/dietary intervention for T2DM prevention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Fjj完成签到,获得积分20
刚刚
李健应助无私的鸣凤采纳,获得30
1秒前
bkagyin应助mochi采纳,获得10
3秒前
4秒前
5秒前
可爱邓邓完成签到 ,获得积分10
6秒前
Karinaa发布了新的文献求助10
9秒前
11发布了新的文献求助10
10秒前
李健应助俭朴的世立采纳,获得10
10秒前
沐雨完成签到,获得积分20
11秒前
Liziqi823完成签到,获得积分10
11秒前
skyla1003完成签到 ,获得积分10
18秒前
20秒前
科研通AI2S应助牛诗悦采纳,获得10
25秒前
研友_aLjo9n完成签到,获得积分10
27秒前
27秒前
31秒前
31秒前
醉烟雨完成签到,获得积分10
31秒前
lcc应助东方天奇采纳,获得10
32秒前
陶醉的蜜蜂完成签到 ,获得积分10
33秒前
YanDongXu完成签到 ,获得积分10
35秒前
35秒前
36秒前
mochi发布了新的文献求助10
37秒前
40秒前
百里盼山发布了新的文献求助10
40秒前
43秒前
44秒前
44秒前
44秒前
45秒前
我是老大应助科研通管家采纳,获得10
46秒前
bkagyin应助科研通管家采纳,获得10
46秒前
传奇3应助科研通管家采纳,获得10
46秒前
NexusExplorer应助科研通管家采纳,获得10
47秒前
威武冷雪发布了新的文献求助10
47秒前
CipherSage应助科研通管家采纳,获得10
47秒前
酷波er应助科研通管家采纳,获得10
47秒前
英姑应助科研通管家采纳,获得10
47秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140431
求助须知:如何正确求助?哪些是违规求助? 2791320
关于积分的说明 7798479
捐赠科研通 2447661
什么是DOI,文献DOI怎么找? 1302008
科研通“疑难数据库(出版商)”最低求助积分说明 626359
版权声明 601194