A machine learning-based diagnosis modelling of type 2 diabetes mellitus with environmental metal exposure

随机森林 特征选择 2型糖尿病 计算机科学 梯度升压 人工智能 集成学习 Boosting(机器学习) 机器学习 统计 医学 糖尿病 数学 内分泌学
作者
Min Zhao,Jin W,Wenzhi Qin,Xin Huang,Guangdi Chen,Xinyuan Zhao
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:235: 107537-107537 被引量:22
标识
DOI:10.1016/j.cmpb.2023.107537
摘要

Increasing and compelling evidence has been proved that urinary and dietary metal exposure are underappreciated but potentially modifiable biomarkers for type 2 diabetes mellitus (T2DM). The aims of this study were (1) to identify the key potential biomarkers which contributed to T2DM with effective and parsimonious features and (2) to assess the utility of baseline variables and metal exposure in the diagnosis of T2DM.Based on the National Health and Nutrition Examination Survey (NHANES), we selected 9822 screening records with 82 significant variables covering demographics, lifestyle, anthropometric measures, diet and metal exposure for this study. Combining extreme gradient boosting (XGBoost), random forest and light gradient boosting machine (lightGBM), a soft voting ensemble model was proposed to measure the importance of 82 features. With this soft voting ensemble model and variance inflation factor (VIF), strong multicollinear features with low importance scores were further removed from candidate biomarkers. Then, a soft voting ensemble classifier was adopted to demonstrate the efficiency of the proposed feature selection method.With the novel feature selection method, 12 baseline variables and 3 metal variables were selected to detect patients at risk for T2DM in our study. For metal variables, the dietary copper (Cu), urinary cadmium (Cd) and urinary mercury (Hg) metals were selected as the most remarkable metal exposure and the corresponding P-values were all less than 0.05. In a classification model of T2DM with 12 baseline biomarkers, the addition of 3 metal exposure improved the classification accuracy of T2DM from a traditional area under the curve (AUC) 0.792 of the receiver operating characteristic (ROC) to an AUC 0.847.This was the first demonstration of T2DM classification with machine learning under urinary and dietary metal exposure. Improved prediction precision illustrated the effectiveness of the proposed machine learning-based diagnosis model facilitated lifestyle/dietary intervention for T2DM prevention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
姜且完成签到 ,获得积分10
1秒前
拼命十三娘完成签到,获得积分20
1秒前
1秒前
misa完成签到,获得积分10
2秒前
wdw2501完成签到,获得积分10
3秒前
4秒前
温伊完成签到,获得积分10
4秒前
肥瘦肉肉发布了新的文献求助10
5秒前
barrycream完成签到,获得积分10
5秒前
5秒前
幸福的雪枫完成签到 ,获得积分10
6秒前
Hu完成签到,获得积分10
7秒前
多亿点完成签到 ,获得积分10
8秒前
子车谷波发布了新的文献求助10
9秒前
852应助FAN采纳,获得10
11秒前
耄耋科研人完成签到,获得积分10
11秒前
11秒前
11秒前
科研通AI5应助歪比巴卜采纳,获得10
11秒前
爆米花应助霸气谷蕊采纳,获得30
11秒前
12秒前
诸葛小哥哥完成签到 ,获得积分10
12秒前
ccccchen完成签到,获得积分10
13秒前
13秒前
15秒前
鞠佳园完成签到,获得积分20
16秒前
sdfwsdfsd完成签到,获得积分10
16秒前
gg发布了新的文献求助10
17秒前
雨天发布了新的文献求助10
18秒前
854fycchjh完成签到,获得积分10
18秒前
18秒前
19秒前
20秒前
慕青应助小星在努力采纳,获得10
20秒前
ks发布了新的文献求助10
20秒前
21秒前
儒雅的冷梅完成签到 ,获得积分10
22秒前
云翰完成签到,获得积分10
22秒前
博修发布了新的文献求助10
22秒前
勤恳的德地完成签到,获得积分10
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967809
求助须知:如何正确求助?哪些是违规求助? 3512946
关于积分的说明 11165553
捐赠科研通 3247977
什么是DOI,文献DOI怎么找? 1794067
邀请新用户注册赠送积分活动 874843
科研通“疑难数据库(出版商)”最低求助积分说明 804578