A machine learning-based diagnosis modelling of type 2 diabetes mellitus with environmental metal exposure

随机森林 特征选择 2型糖尿病 计算机科学 梯度升压 人工智能 集成学习 Boosting(机器学习) 机器学习 统计 医学 糖尿病 数学 内分泌学
作者
Min Zhao,Jin Wan,Wenzhi Qin,Xin Huang,Guangdi Chen,Xinyuan Zhao
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:235: 107537-107537 被引量:25
标识
DOI:10.1016/j.cmpb.2023.107537
摘要

Increasing and compelling evidence has been proved that urinary and dietary metal exposure are underappreciated but potentially modifiable biomarkers for type 2 diabetes mellitus (T2DM). The aims of this study were (1) to identify the key potential biomarkers which contributed to T2DM with effective and parsimonious features and (2) to assess the utility of baseline variables and metal exposure in the diagnosis of T2DM.Based on the National Health and Nutrition Examination Survey (NHANES), we selected 9822 screening records with 82 significant variables covering demographics, lifestyle, anthropometric measures, diet and metal exposure for this study. Combining extreme gradient boosting (XGBoost), random forest and light gradient boosting machine (lightGBM), a soft voting ensemble model was proposed to measure the importance of 82 features. With this soft voting ensemble model and variance inflation factor (VIF), strong multicollinear features with low importance scores were further removed from candidate biomarkers. Then, a soft voting ensemble classifier was adopted to demonstrate the efficiency of the proposed feature selection method.With the novel feature selection method, 12 baseline variables and 3 metal variables were selected to detect patients at risk for T2DM in our study. For metal variables, the dietary copper (Cu), urinary cadmium (Cd) and urinary mercury (Hg) metals were selected as the most remarkable metal exposure and the corresponding P-values were all less than 0.05. In a classification model of T2DM with 12 baseline biomarkers, the addition of 3 metal exposure improved the classification accuracy of T2DM from a traditional area under the curve (AUC) 0.792 of the receiver operating characteristic (ROC) to an AUC 0.847.This was the first demonstration of T2DM classification with machine learning under urinary and dietary metal exposure. Improved prediction precision illustrated the effectiveness of the proposed machine learning-based diagnosis model facilitated lifestyle/dietary intervention for T2DM prevention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
你说完成签到,获得积分10
1秒前
1秒前
科研通AI6应助大胆铃铛采纳,获得10
2秒前
长情笑柳应助珈蓝采纳,获得10
2秒前
彩色芷发布了新的文献求助10
3秒前
高高很厉害应助聂难敌采纳,获得50
3秒前
浮游应助老实凝竹采纳,获得10
4秒前
Zx_1993应助Ann采纳,获得20
4秒前
4秒前
5秒前
ice完成签到,获得积分10
5秒前
ldx完成签到,获得积分10
6秒前
和谐的敏发布了新的文献求助10
7秒前
碧蓝绮山应助Aicy1111111采纳,获得10
7秒前
星辰大海应助12345采纳,获得10
8秒前
江上挽风吟墨染完成签到,获得积分10
8秒前
王一正完成签到,获得积分10
11秒前
12秒前
王小雨完成签到 ,获得积分10
12秒前
huangyikun完成签到,获得积分10
12秒前
13秒前
15秒前
15秒前
和谐的敏完成签到,获得积分10
16秒前
16秒前
赵梦妍发布了新的文献求助10
17秒前
善学以致用应助低空飞行采纳,获得10
17秒前
zzzxiangyi完成签到,获得积分10
18秒前
LiYanqin完成签到,获得积分10
18秒前
俏皮的听云完成签到,获得积分10
18秒前
NLNL完成签到,获得积分20
18秒前
xt完成签到,获得积分10
19秒前
19秒前
勇敢的心发布了新的文献求助10
19秒前
19秒前
19秒前
shasha完成签到,获得积分10
19秒前
魅域苍穹发布了新的文献求助10
19秒前
linjiaxin发布了新的文献求助10
19秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5342879
求助须知:如何正确求助?哪些是违规求助? 4478579
关于积分的说明 13940083
捐赠科研通 4375429
什么是DOI,文献DOI怎么找? 2404055
邀请新用户注册赠送积分活动 1396617
关于科研通互助平台的介绍 1368930