Unlocking direct CO2 electrolysis to C3 products via electrolyte supersaturation

过饱和度 电解质 法拉第效率 电解 催化作用 化学 选择性 无机化学 丙醇 原电池 化学工程 材料科学 甲醇 电极 物理化学 有机化学 工程类
作者
Kun Qi,Yang Zhang,Nicolas Onofrio,Eddy Petit,Xiaoqiang Cui,Jingyuan Ma,Jinchang Fan,Huali Wu,Wensen Wang,Ji Li,Jiefeng Liu,Yupeng Zhang,Ying Wang,Guangri Jia,Jiandong Wu,Luc Lajaunie,Chrystelle Salameh,Damien Voiry
出处
期刊:Nature Catalysis [Springer Nature]
卷期号:6 (4): 319-331 被引量:97
标识
DOI:10.1038/s41929-023-00938-z
摘要

The electroreduction of CO2 has recently achieved notable progress in the formation of C2 products such as ethylene and ethanol. However, the direct synthesis of C3 products is considerably limited by the C2–C1 coupling reaction and the faradaic efficiency has remained low. Here we present a supersaturation strategy for the electrosynthesis of 2-propanol from CO2 in highly carbonated electrolytes. By controlling the CO2 concentration above the saturation limit, we have developed a co-electrodeposition method with suppressed galvanic replacement to obtain a CuAg alloy catalyst. In supersaturated conditions, the alloy achieved high performance for the production of 2-propanol with a faradaic efficiency of 56.7% and at a specific current density of 59.3 mA cm−2. Our investigations revealed that the presence of dispersed Ag atoms in Cu weakens the surface binding of intermediates in the middle position of the alkyl chain and strengthens the C–O bonds, which favours the formation of 2-propanol over 1-propanol. Direct CO2 electroreduction on Cu-based catalysts has been used to produce C2 products but yields of C3 products have remained low. Here a CO2 supersaturation strategy is used to promote electrodeposition of a highly alloyed CuAg electrode and its subsequent selectivity towards 2-propanol.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chenjyuu发布了新的文献求助10
刚刚
刚刚
粗暴的仙人掌完成签到,获得积分20
刚刚
1秒前
1秒前
1秒前
logic发布了新的文献求助10
1秒前
习习应助生动的雨竹采纳,获得10
1秒前
bo完成签到 ,获得积分10
1秒前
迟大猫应助啵乐乐采纳,获得10
2秒前
安雯完成签到 ,获得积分10
2秒前
HuLL完成签到,获得积分10
2秒前
Yolo完成签到 ,获得积分10
2秒前
难过的慕青完成签到,获得积分10
2秒前
4秒前
4秒前
4秒前
5秒前
无花果应助sunzhiyu233采纳,获得10
5秒前
韭黄完成签到,获得积分20
5秒前
6秒前
诚c发布了新的文献求助10
6秒前
自然秋柳完成签到 ,获得积分10
6秒前
我是老大应助经法采纳,获得10
6秒前
默默的皮牙子应助经法采纳,获得10
6秒前
orixero应助经法采纳,获得10
6秒前
小马甲应助经法采纳,获得10
6秒前
柚子成精应助经法采纳,获得10
7秒前
小蘑菇应助经法采纳,获得10
7秒前
深情安青应助经法采纳,获得10
7秒前
李爱国应助经法采纳,获得10
7秒前
共享精神应助经法采纳,获得10
7秒前
yyyyyy完成签到 ,获得积分10
7秒前
LL完成签到,获得积分10
7秒前
ziyiziyi发布了新的文献求助10
8秒前
哈哈哈haha发布了新的文献求助40
8秒前
8秒前
啵乐乐完成签到,获得积分10
9秒前
哈哈完成签到,获得积分20
9秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759