已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-Objective Unsupervised Band Selection Method for Hyperspectral Images Classification

高光谱成像 人工智能 模式识别(心理学) 计算机科学 渡线 布谷鸟搜索 选择(遗传算法) 人口 机器学习 人口学 粒子群优化 社会学
作者
Xianfeng Ou,Meng Wu,Bing Tu,Guoyun Zhang,Wujing Li
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 1952-1965 被引量:18
标识
DOI:10.1109/tip.2023.3258739
摘要

With the increasing spectral dimension of hyperspectral images (HSI), how correctly choose bands based on band correlation and information has become more significant, but also complicated. Band selection is a combinatorial optimization problem, and intelligent optimization algorithms have been shown to be crucial in solving combinatorial optimization problems. However, major of them only use a single objective as the selection index, while neglecting the overall features of hyperspectral images, which may lead to inaccuracy in object detection. To tackle this, we propose a band selection method based on a multi-objective cuckoo search algorithm (MOCS) when constructing a multi-objective unsupervised band selection model based on the amount of information and correlation of the bands (MOCS-BS). Specifically, an adaptive strategy based on population crowding degree is first proposed to assist Lévy flight in overcoming the influence of the parameter constancy. Then, an information-sharing strategy based on grouping and crossover is designed to balance the search ability between global exploration and local exploitation, which can overcome the shortcomings caused by the lack of information interaction between individuals. Finally, the HSI classification experiments are performed by Random Forest and KNN classifiers based on the subset of bands selected by the proposed MOCS-BS method. The proposed method is compared with state-of-the-art algorithms including neighborhood grouping normalized matched filter (NGNMF) and multi-objective artificial bee colony with band selection (MABC-BS) on four HSI datasets. The experimental results demonstrate that MOCS-BS is more effective and robust than other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
希望天下0贩的0应助琴酒采纳,获得50
3秒前
兔子应助zhang采纳,获得10
3秒前
小陈要努力完成签到,获得积分20
4秒前
11秒前
yuanyuanyang发布了新的文献求助10
14秒前
16秒前
Ava应助wanghaiyang采纳,获得100
17秒前
23秒前
甜蜜乐松完成签到,获得积分10
35秒前
39秒前
yuntong完成签到 ,获得积分10
43秒前
43秒前
暖暖完成签到,获得积分20
44秒前
赘婿应助orange9采纳,获得10
48秒前
顺风顺水顺科研完成签到,获得积分10
49秒前
君寻完成签到 ,获得积分10
52秒前
54秒前
orange9发布了新的文献求助10
58秒前
彳亍完成签到 ,获得积分10
1分钟前
Owen应助初雪平寒采纳,获得10
1分钟前
1分钟前
balabala完成签到 ,获得积分10
1分钟前
葛怀锐完成签到 ,获得积分10
1分钟前
伶俐绿海完成签到 ,获得积分10
1分钟前
kudoukoumei发布了新的文献求助10
1分钟前
小肖的KYT完成签到,获得积分10
1分钟前
1分钟前
危机的慕卉完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
本本完成签到 ,获得积分10
1分钟前
小天狼星完成签到,获得积分10
1分钟前
在水一方应助夜云采纳,获得10
1分钟前
初雪平寒发布了新的文献求助10
1分钟前
小肖的KYT给背后曼雁的求助进行了留言
1分钟前
初雪平寒完成签到,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
www发布了新的文献求助10
2分钟前
高分求助中
Востребованный временем 2500
诺贝尔奖与生命科学 1000
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
effects of intravenous lidocaine on postoperative pain and gastrointestinal function recovery following gastrointestinal surgery: a meta-analysis 400
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3379069
求助须知:如何正确求助?哪些是违规求助? 2994553
关于积分的说明 8759702
捐赠科研通 2679092
什么是DOI,文献DOI怎么找? 1467485
科研通“疑难数据库(出版商)”最低求助积分说明 678691
邀请新用户注册赠送积分活动 670381