A deep learning approach for abnormal pore pressure prediction based on multivariate time series of kick

稳健性(进化) 计算机科学 多元统计 图形 人工智能 卷积神经网络 平均绝对百分比误差 人工神经网络 均方误差 模式识别(心理学) 算法 数据挖掘 机器学习 统计 数学 生物化学 化学 理论计算机科学 基因
作者
Li Qingfeng,Fu Jianhong,Chi Peng,Fan Min,Xiaomin Zhang,Yun Yang,Xu Zhaoyang,Jing Bai,Yu Ziqiang,Hao Wang
标识
DOI:10.1016/j.geoen.2023.211715
摘要

After a kick occurs during petroleum drilling, the rapid and accurate prediction of abnormal pore pressure is the basis for taking proper well control measures. In this work, we build an end-to-end intelligent model for rapid determination of abnormal pore pressure, which is composed of temporal convolution, graph adaptive learning, and graph convolution. The field kick data of a shale gas reservoir is collected to train and test the model. In the 10 tests, the present model produces a maximum RE of 9.89%, an average RMSE of 0.09, and an average MAPE of 3.9%. An ablation experiment is conduced to evaluate the individual contributions of graph adaptive learning and graph convolution. Compared to the multi-time-step long short-term memory model, the maximum RE is reduced by 93.7%, while RMSE and MAPE are reduced by 82% for both. It is found that the multi-core and multi-length one-dimensional convolutional neural network outperforms the conventional model in extracting multivariate time series features when predicting abnormal pore pressure. Using the strategies of graph structure adaptive learning and graph convolution, the abundance of information and sample diversity in the dataset are greatly enhanced. In general, the present model has high prediction accuracy (96.1%) and reliable robustness in the prediction of abnormal pore pressure, and demonstrates advantages over traditional methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
千空发布了新的文献求助10
刚刚
慕青应助科研通管家采纳,获得10
刚刚
香蕉觅云应助科研通管家采纳,获得10
刚刚
思源应助科研通管家采纳,获得10
刚刚
YamDaamCaa应助科研通管家采纳,获得30
刚刚
汉堡包应助科研通管家采纳,获得10
1秒前
Owen应助科研通管家采纳,获得10
1秒前
大个应助科研通管家采纳,获得10
1秒前
情怀应助科研通管家采纳,获得10
1秒前
清秀的月亮完成签到,获得积分20
1秒前
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
田様应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
1秒前
2秒前
啦啦啦完成签到,获得积分10
3秒前
3秒前
3秒前
学术水货完成签到,获得积分20
4秒前
天天快乐应助聪明的一鸣采纳,获得10
4秒前
5秒前
蓝色天空发布了新的文献求助30
5秒前
高扬发布了新的文献求助10
5秒前
6秒前
guantlv发布了新的文献求助10
8秒前
badguyGJ完成签到,获得积分10
8秒前
wch666发布了新的文献求助10
9秒前
kathleen完成签到,获得积分10
9秒前
badguyGJ发布了新的文献求助10
11秒前
12秒前
CAOHOU应助学术水货采纳,获得10
12秒前
carl完成签到 ,获得积分10
13秒前
科研通AI5应助淡然绝山采纳,获得10
15秒前
16秒前
17秒前
CodeCraft应助爱学习的曼卉采纳,获得10
17秒前
18秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979946
求助须知:如何正确求助?哪些是违规求助? 3524093
关于积分的说明 11219832
捐赠科研通 3261529
什么是DOI,文献DOI怎么找? 1800686
邀请新用户注册赠送积分活动 879263
科研通“疑难数据库(出版商)”最低求助积分说明 807226