A deep learning approach for abnormal pore pressure prediction based on multivariate time series of kick

稳健性(进化) 计算机科学 多元统计 图形 人工智能 卷积神经网络 平均绝对百分比误差 人工神经网络 均方误差 模式识别(心理学) 算法 数据挖掘 机器学习 统计 数学 基因 理论计算机科学 生物化学 化学
作者
Li Qingfeng,Fu Jianhong,Chi Peng,Fan Min,Xiaomin Zhang,Yun Yang,Xu Zhaoyang,Jing Bai,Yu Ziqiang,Hao Wang
标识
DOI:10.1016/j.geoen.2023.211715
摘要

After a kick occurs during petroleum drilling, the rapid and accurate prediction of abnormal pore pressure is the basis for taking proper well control measures. In this work, we build an end-to-end intelligent model for rapid determination of abnormal pore pressure, which is composed of temporal convolution, graph adaptive learning, and graph convolution. The field kick data of a shale gas reservoir is collected to train and test the model. In the 10 tests, the present model produces a maximum RE of 9.89%, an average RMSE of 0.09, and an average MAPE of 3.9%. An ablation experiment is conduced to evaluate the individual contributions of graph adaptive learning and graph convolution. Compared to the multi-time-step long short-term memory model, the maximum RE is reduced by 93.7%, while RMSE and MAPE are reduced by 82% for both. It is found that the multi-core and multi-length one-dimensional convolutional neural network outperforms the conventional model in extracting multivariate time series features when predicting abnormal pore pressure. Using the strategies of graph structure adaptive learning and graph convolution, the abundance of information and sample diversity in the dataset are greatly enhanced. In general, the present model has high prediction accuracy (96.1%) and reliable robustness in the prediction of abnormal pore pressure, and demonstrates advantages over traditional methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zys完成签到 ,获得积分10
刚刚
renshiq完成签到,获得积分10
刚刚
刚刚
科目三应助orchid采纳,获得10
3秒前
3秒前
陶醉之玉完成签到,获得积分10
4秒前
Maddy完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
bobobo发布了新的文献求助10
5秒前
Enkcy发布了新的文献求助10
5秒前
CGEA完成签到,获得积分10
5秒前
wuyuan完成签到,获得积分10
6秒前
酷波er应助臻灏采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
风驻云停完成签到,获得积分10
8秒前
Ava应助隔壁的邻家小兴采纳,获得10
10秒前
等待的道消完成签到 ,获得积分10
10秒前
无极微光应助过时的访梦采纳,获得20
10秒前
xiaoxie发布了新的文献求助20
11秒前
11秒前
11秒前
呐呐呐发布了新的文献求助10
13秒前
情怀应助carrotyi采纳,获得10
14秒前
千树怜发布了新的文献求助10
16秒前
16秒前
17秒前
orchid发布了新的文献求助10
18秒前
小尚完成签到,获得积分10
18秒前
小小咸鱼完成签到 ,获得积分10
19秒前
summer完成签到,获得积分10
19秒前
19秒前
Frank完成签到,获得积分10
20秒前
Criminology34发布了新的文献求助300
21秒前
嘿嘿应助乾澪怀新采纳,获得10
21秒前
量子星尘发布了新的文献求助10
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5685045
求助须知:如何正确求助?哪些是违规求助? 5040038
关于积分的说明 15185849
捐赠科研通 4844104
什么是DOI,文献DOI怎么找? 2597110
邀请新用户注册赠送积分活动 1549690
关于科研通互助平台的介绍 1508176