A deep learning approach for abnormal pore pressure prediction based on multivariate time series of kick

稳健性(进化) 计算机科学 多元统计 图形 人工智能 卷积神经网络 平均绝对百分比误差 人工神经网络 均方误差 模式识别(心理学) 算法 数据挖掘 机器学习 统计 数学 基因 理论计算机科学 生物化学 化学
作者
Li Qingfeng,Fu Jianhong,Chi Peng,Fan Min,Xiaomin Zhang,Yun Yang,Xu Zhaoyang,Jing Bai,Yu Ziqiang,Hao Wang
标识
DOI:10.1016/j.geoen.2023.211715
摘要

After a kick occurs during petroleum drilling, the rapid and accurate prediction of abnormal pore pressure is the basis for taking proper well control measures. In this work, we build an end-to-end intelligent model for rapid determination of abnormal pore pressure, which is composed of temporal convolution, graph adaptive learning, and graph convolution. The field kick data of a shale gas reservoir is collected to train and test the model. In the 10 tests, the present model produces a maximum RE of 9.89%, an average RMSE of 0.09, and an average MAPE of 3.9%. An ablation experiment is conduced to evaluate the individual contributions of graph adaptive learning and graph convolution. Compared to the multi-time-step long short-term memory model, the maximum RE is reduced by 93.7%, while RMSE and MAPE are reduced by 82% for both. It is found that the multi-core and multi-length one-dimensional convolutional neural network outperforms the conventional model in extracting multivariate time series features when predicting abnormal pore pressure. Using the strategies of graph structure adaptive learning and graph convolution, the abundance of information and sample diversity in the dataset are greatly enhanced. In general, the present model has high prediction accuracy (96.1%) and reliable robustness in the prediction of abnormal pore pressure, and demonstrates advantages over traditional methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
踏实十三发布了新的文献求助10
2秒前
Akim应助mz采纳,获得10
2秒前
董先生发布了新的文献求助10
2秒前
蚊香液发布了新的文献求助10
2秒前
鲸鱼发布了新的文献求助10
2秒前
2秒前
是希希啊a发布了新的文献求助10
3秒前
FashionBoy应助栗子采纳,获得10
3秒前
ky幻影完成签到,获得积分10
3秒前
dddd发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
科研通AI6应助里昂采纳,获得30
3秒前
4秒前
枯草芽孢完成签到,获得积分10
4秒前
li完成签到,获得积分20
4秒前
赘婿应助Spike采纳,获得10
4秒前
饭饭大王完成签到,获得积分10
4秒前
SY发布了新的文献求助10
5秒前
5秒前
5秒前
诚心寄灵完成签到,获得积分10
6秒前
6秒前
Halari发布了新的文献求助10
6秒前
6秒前
zoe11完成签到,获得积分10
6秒前
6秒前
FlipFlops发布了新的文献求助10
7秒前
我的miemie发布了新的文献求助10
8秒前
小木完成签到 ,获得积分10
8秒前
逢投必中完成签到 ,获得积分10
8秒前
李爱国应助俭朴的雨安采纳,获得10
8秒前
quan完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
10秒前
lj完成签到,获得积分10
10秒前
qdr关闭了qdr文献求助
10秒前
Hua发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667969
求助须知:如何正确求助?哪些是违规求助? 4888527
关于积分的说明 15122487
捐赠科研通 4826782
什么是DOI,文献DOI怎么找? 2584295
邀请新用户注册赠送积分活动 1538188
关于科研通互助平台的介绍 1496482