A deep learning approach for abnormal pore pressure prediction based on multivariate time series of kick

稳健性(进化) 计算机科学 多元统计 图形 人工智能 卷积神经网络 平均绝对百分比误差 人工神经网络 均方误差 模式识别(心理学) 算法 数据挖掘 机器学习 统计 数学 生物化学 化学 理论计算机科学 基因
作者
Li Qingfeng,Fu Jianhong,Chi Peng,Fan Min,Xiaomin Zhang,Yun Yang,Xu Zhaoyang,Jing Bai,Yu Ziqiang,Hao Wang
标识
DOI:10.1016/j.geoen.2023.211715
摘要

After a kick occurs during petroleum drilling, the rapid and accurate prediction of abnormal pore pressure is the basis for taking proper well control measures. In this work, we build an end-to-end intelligent model for rapid determination of abnormal pore pressure, which is composed of temporal convolution, graph adaptive learning, and graph convolution. The field kick data of a shale gas reservoir is collected to train and test the model. In the 10 tests, the present model produces a maximum RE of 9.89%, an average RMSE of 0.09, and an average MAPE of 3.9%. An ablation experiment is conduced to evaluate the individual contributions of graph adaptive learning and graph convolution. Compared to the multi-time-step long short-term memory model, the maximum RE is reduced by 93.7%, while RMSE and MAPE are reduced by 82% for both. It is found that the multi-core and multi-length one-dimensional convolutional neural network outperforms the conventional model in extracting multivariate time series features when predicting abnormal pore pressure. Using the strategies of graph structure adaptive learning and graph convolution, the abundance of information and sample diversity in the dataset are greatly enhanced. In general, the present model has high prediction accuracy (96.1%) and reliable robustness in the prediction of abnormal pore pressure, and demonstrates advantages over traditional methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助科研通管家采纳,获得10
刚刚
Singularity应助科研通管家采纳,获得20
刚刚
Singularity应助科研通管家采纳,获得10
刚刚
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
Nyota应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
sissiarno应助科研通管家采纳,获得300
1秒前
Ava应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
eri发布了新的文献求助10
2秒前
太清发布了新的文献求助10
5秒前
10秒前
11秒前
无花果应助乘风的法袍采纳,获得10
12秒前
13秒前
eri完成签到,获得积分20
13秒前
13秒前
14秒前
15秒前
路痴发布了新的文献求助10
15秒前
艳明关注了科研通微信公众号
15秒前
Akim应助太清采纳,获得10
15秒前
xien发布了新的文献求助10
17秒前
18秒前
MOON完成签到,获得积分10
18秒前
烤地瓜的z完成签到,获得积分10
19秒前
Leeny驳回了打打应助
19秒前
20秒前
动听的觅波完成签到,获得积分10
20秒前
莎莎发布了新的文献求助10
20秒前
路痴完成签到,获得积分10
22秒前
22秒前
22秒前
哒哒发布了新的文献求助10
22秒前
烤地瓜的z发布了新的文献求助10
23秒前
kw完成签到 ,获得积分20
25秒前
英俊的铭应助顺心的水之采纳,获得10
26秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136176
求助须知:如何正确求助?哪些是违规求助? 2787079
关于积分的说明 7780454
捐赠科研通 2443217
什么是DOI,文献DOI怎么找? 1298964
科研通“疑难数据库(出版商)”最低求助积分说明 625294
版权声明 600870