A deep learning approach for abnormal pore pressure prediction based on multivariate time series of kick

稳健性(进化) 计算机科学 多元统计 图形 人工智能 卷积神经网络 平均绝对百分比误差 人工神经网络 均方误差 模式识别(心理学) 算法 数据挖掘 机器学习 统计 数学 基因 理论计算机科学 生物化学 化学
作者
Li Qingfeng,Fu Jianhong,Chi Peng,Fan Min,Xiaomin Zhang,Yun Yang,Xu Zhaoyang,Jing Bai,Yu Ziqiang,Hao Wang
标识
DOI:10.1016/j.geoen.2023.211715
摘要

After a kick occurs during petroleum drilling, the rapid and accurate prediction of abnormal pore pressure is the basis for taking proper well control measures. In this work, we build an end-to-end intelligent model for rapid determination of abnormal pore pressure, which is composed of temporal convolution, graph adaptive learning, and graph convolution. The field kick data of a shale gas reservoir is collected to train and test the model. In the 10 tests, the present model produces a maximum RE of 9.89%, an average RMSE of 0.09, and an average MAPE of 3.9%. An ablation experiment is conduced to evaluate the individual contributions of graph adaptive learning and graph convolution. Compared to the multi-time-step long short-term memory model, the maximum RE is reduced by 93.7%, while RMSE and MAPE are reduced by 82% for both. It is found that the multi-core and multi-length one-dimensional convolutional neural network outperforms the conventional model in extracting multivariate time series features when predicting abnormal pore pressure. Using the strategies of graph structure adaptive learning and graph convolution, the abundance of information and sample diversity in the dataset are greatly enhanced. In general, the present model has high prediction accuracy (96.1%) and reliable robustness in the prediction of abnormal pore pressure, and demonstrates advantages over traditional methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xukaixuan001完成签到,获得积分10
1秒前
共享精神应助Henry采纳,获得10
1秒前
zoeyliu发布了新的文献求助10
1秒前
2秒前
一煽情发布了新的文献求助10
2秒前
saily完成签到,获得积分10
2秒前
2秒前
Sophia发布了新的文献求助10
2秒前
专注的问寒应助127采纳,获得20
3秒前
小刘很怕忙完成签到,获得积分10
3秒前
3秒前
4秒前
求助人员发布了新的文献求助10
4秒前
junzilan完成签到,获得积分10
4秒前
七月完成签到,获得积分10
4秒前
ffwwxye完成签到,获得积分10
4秒前
我不是阿良完成签到,获得积分10
4秒前
4秒前
上官若男应助豆豆采纳,获得10
5秒前
刻苦的秋玲完成签到,获得积分10
5秒前
5秒前
min发布了新的文献求助10
5秒前
Zoro完成签到,获得积分10
5秒前
令狐子轩完成签到,获得积分10
6秒前
6秒前
heli完成签到,获得积分10
6秒前
昏睡的咖啡完成签到,获得积分10
6秒前
6秒前
活泼的平灵完成签到,获得积分10
6秒前
mini完成签到,获得积分10
6秒前
曾曾完成签到,获得积分10
7秒前
7秒前
Zoro发布了新的文献求助10
8秒前
Gao发布了新的文献求助20
8秒前
杨杨杨发布了新的文献求助20
8秒前
8秒前
Owen应助和平星采纳,获得10
8秒前
林林完成签到,获得积分10
8秒前
艾文发布了新的文献求助10
8秒前
陆小花完成签到,获得积分20
8秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5585284
求助须知:如何正确求助?哪些是违规求助? 4669106
关于积分的说明 14774781
捐赠科研通 4617521
什么是DOI,文献DOI怎么找? 2530479
邀请新用户注册赠送积分活动 1499197
关于科研通互助平台的介绍 1467660