Boosting particle swarm optimization by backtracking search algorithm for optimization problems

计算机科学 回溯 粒子群优化 数学优化 局部搜索(优化) 测试套件 元启发式 趋同(经济学) 多群优化 算法 群体行为 Boosting(机器学习) 测试用例 人工智能 机器学习 数学 回归分析 经济 经济增长
作者
Sukanta Nama,Apu Kumar Saha,Sanjoy Chakraborty,Amir H. Gandomi,Laith Abualigah
出处
期刊:Swarm and evolutionary computation [Elsevier BV]
卷期号:79: 101304-101304 被引量:55
标识
DOI:10.1016/j.swevo.2023.101304
摘要

Adjusting the search behaviors of swarm-based algorithms during their execution is a fundamental errand for addressing real-world global optimizing challenges. Along this line, scholars are actively investigating the unvisited areas of a problem domain rationally. Particle Swarm Optimization (PSO), a popular swarm-based optimization algorithm, is broadly applied to resolve different real-world problems because of its more robust searching capacity. However, in some situations, due to an unbalanced trade-off between exploitation and exploration, PSO gets stuck in a suboptimal solution. To overcome this problem, this study proposes a new ensemble algorithm called e-mPSOBSA with the aid of the reformed Backtracking Search Algorithm (BSA) and PSO. The proposed technique first integrates PSO's operational potential and then introduces BSA's exploration capability to help boost global exploration, local exploitation, and an acceptable balance during the quest process. The IEEE CEC 2014 and CEC 2017 test function suite was considered for evaluation. The outcomes were contrasted with 26 state-of-the-art algorithms, including popular PSO and BSA variants. The convergence analysis, diversity analysis, and statistical test were also executed. In addition, the projected e-mPSOBSA was employed to evaluate four unconstrained and seven constrained engineering design problems, and performances were equated with various algorithms. All these analyses endorse the better performance of the suggested e-mPSOBSA for global optimization tasks, search performance, solution accuracy, and convergence rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助无情平松采纳,获得10
1秒前
FashionBoy应助mxm12138采纳,获得30
1秒前
去为我我完成签到,获得积分10
3秒前
3秒前
鬲木发布了新的文献求助10
3秒前
4秒前
siren完成签到,获得积分10
5秒前
本是个江湖散人完成签到,获得积分10
8秒前
思源应助鬲木采纳,获得10
8秒前
无情平松完成签到,获得积分10
9秒前
9秒前
脑洞疼应助草上飞采纳,获得10
9秒前
小鸣完成签到 ,获得积分10
10秒前
陈苗发布了新的文献求助10
10秒前
cx完成签到 ,获得积分10
11秒前
xinxinbaby发布了新的文献求助10
12秒前
dandna完成签到 ,获得积分10
13秒前
去为我我发布了新的文献求助10
13秒前
13秒前
明明发布了新的文献求助10
13秒前
16秒前
16秒前
奥特超曼应助十七采纳,获得10
17秒前
17秒前
18秒前
活力鸡完成签到,获得积分10
18秒前
NexusExplorer应助yang采纳,获得10
19秒前
19秒前
英姑应助泥嚎采纳,获得10
19秒前
夜猫酱酱子完成签到,获得积分10
19秒前
imkhun1021发布了新的文献求助10
21秒前
mingming发布了新的文献求助10
22秒前
23秒前
黎雪芳完成签到,获得积分10
23秒前
24秒前
imkhun1021完成签到,获得积分10
26秒前
26秒前
27秒前
27秒前
张雯思发布了新的文献求助10
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989660
求助须知:如何正确求助?哪些是违规求助? 3531826
关于积分的说明 11255082
捐赠科研通 3270447
什么是DOI,文献DOI怎么找? 1804981
邀请新用户注册赠送积分活动 882136
科研通“疑难数据库(出版商)”最低求助积分说明 809176