亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Boosting particle swarm optimization by backtracking search algorithm for optimization problems

计算机科学 回溯 粒子群优化 数学优化 局部搜索(优化) 测试套件 元启发式 趋同(经济学) 多群优化 算法 群体行为 Boosting(机器学习) 测试用例 人工智能 机器学习 数学 回归分析 经济 经济增长
作者
Sukanta Nama,Apu Kumar Saha,Sanjoy Chakraborty,Amir H. Gandomi,Laith Abualigah
出处
期刊:Swarm and evolutionary computation [Elsevier BV]
卷期号:79: 101304-101304 被引量:55
标识
DOI:10.1016/j.swevo.2023.101304
摘要

Adjusting the search behaviors of swarm-based algorithms during their execution is a fundamental errand for addressing real-world global optimizing challenges. Along this line, scholars are actively investigating the unvisited areas of a problem domain rationally. Particle Swarm Optimization (PSO), a popular swarm-based optimization algorithm, is broadly applied to resolve different real-world problems because of its more robust searching capacity. However, in some situations, due to an unbalanced trade-off between exploitation and exploration, PSO gets stuck in a suboptimal solution. To overcome this problem, this study proposes a new ensemble algorithm called e-mPSOBSA with the aid of the reformed Backtracking Search Algorithm (BSA) and PSO. The proposed technique first integrates PSO's operational potential and then introduces BSA's exploration capability to help boost global exploration, local exploitation, and an acceptable balance during the quest process. The IEEE CEC 2014 and CEC 2017 test function suite was considered for evaluation. The outcomes were contrasted with 26 state-of-the-art algorithms, including popular PSO and BSA variants. The convergence analysis, diversity analysis, and statistical test were also executed. In addition, the projected e-mPSOBSA was employed to evaluate four unconstrained and seven constrained engineering design problems, and performances were equated with various algorithms. All these analyses endorse the better performance of the suggested e-mPSOBSA for global optimization tasks, search performance, solution accuracy, and convergence rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
28秒前
梦想家完成签到,获得积分10
57秒前
59秒前
story发布了新的文献求助10
1分钟前
科研通AI2S应助story采纳,获得10
1分钟前
1分钟前
鉴定为学计算学的完成签到,获得积分10
1分钟前
熊啊发布了新的文献求助10
1分钟前
Kevin完成签到,获得积分10
2分钟前
sci2025opt完成签到 ,获得积分10
2分钟前
2分钟前
李健应助鸡蛋黄采纳,获得10
3分钟前
3分钟前
wujiwuhui完成签到 ,获得积分10
3分钟前
3分钟前
鸡蛋黄发布了新的文献求助10
3分钟前
完美世界应助眼睛大智宸采纳,获得10
3分钟前
市政的艺术家完成签到,获得积分10
3分钟前
Virtual应助科研通管家采纳,获得20
3分钟前
JamesPei应助市政的艺术家采纳,获得20
4分钟前
lod完成签到,获得积分10
4分钟前
4分钟前
淡淡醉波wuliao完成签到 ,获得积分0
4分钟前
可可完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
熊啊发布了新的文献求助10
5分钟前
lj发布了新的文献求助10
5分钟前
Ava应助krajicek采纳,获得10
5分钟前
NexusExplorer应助熊啊采纳,获得10
5分钟前
lj完成签到,获得积分10
5分钟前
5分钟前
krajicek发布了新的文献求助10
5分钟前
排骨大王完成签到,获得积分10
5分钟前
6分钟前
6分钟前
灵巧灵松发布了新的文献求助10
6分钟前
6分钟前
Jiayi完成签到 ,获得积分10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4568949
求助须知:如何正确求助?哪些是违规求助? 3991291
关于积分的说明 12355635
捐赠科研通 3663460
什么是DOI,文献DOI怎么找? 2018921
邀请新用户注册赠送积分活动 1053332
科研通“疑难数据库(出版商)”最低求助积分说明 940877