Boosting particle swarm optimization by backtracking search algorithm for optimization problems

计算机科学 回溯 粒子群优化 数学优化 局部搜索(优化) 测试套件 元启发式 趋同(经济学) 多群优化 算法 群体行为 Boosting(机器学习) 测试用例 人工智能 机器学习 数学 回归分析 经济 经济增长
作者
Sukanta Nama,Apu Kumar Saha,Sanjoy Chakraborty,Amir H. Gandomi,Laith Abualigah
出处
期刊:Swarm and evolutionary computation [Elsevier]
卷期号:79: 101304-101304 被引量:55
标识
DOI:10.1016/j.swevo.2023.101304
摘要

Adjusting the search behaviors of swarm-based algorithms during their execution is a fundamental errand for addressing real-world global optimizing challenges. Along this line, scholars are actively investigating the unvisited areas of a problem domain rationally. Particle Swarm Optimization (PSO), a popular swarm-based optimization algorithm, is broadly applied to resolve different real-world problems because of its more robust searching capacity. However, in some situations, due to an unbalanced trade-off between exploitation and exploration, PSO gets stuck in a suboptimal solution. To overcome this problem, this study proposes a new ensemble algorithm called e-mPSOBSA with the aid of the reformed Backtracking Search Algorithm (BSA) and PSO. The proposed technique first integrates PSO's operational potential and then introduces BSA's exploration capability to help boost global exploration, local exploitation, and an acceptable balance during the quest process. The IEEE CEC 2014 and CEC 2017 test function suite was considered for evaluation. The outcomes were contrasted with 26 state-of-the-art algorithms, including popular PSO and BSA variants. The convergence analysis, diversity analysis, and statistical test were also executed. In addition, the projected e-mPSOBSA was employed to evaluate four unconstrained and seven constrained engineering design problems, and performances were equated with various algorithms. All these analyses endorse the better performance of the suggested e-mPSOBSA for global optimization tasks, search performance, solution accuracy, and convergence rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浅惜应助西早采纳,获得10
刚刚
糊涂的元蝶完成签到,获得积分10
1秒前
1秒前
2秒前
刻苦熊猫应助研友_nPoXoL采纳,获得10
2秒前
邵燚铭完成签到 ,获得积分10
2秒前
悦耳娩完成签到,获得积分10
4秒前
羡羡呀完成签到 ,获得积分10
4秒前
Serena完成签到,获得积分10
5秒前
伶俐绿柏完成签到,获得积分10
6秒前
6秒前
8秒前
张Z完成签到,获得积分10
8秒前
8秒前
研友_nPPzon完成签到,获得积分10
8秒前
LIU完成签到,获得积分10
9秒前
9秒前
853225598完成签到,获得积分10
9秒前
侠医2012完成签到,获得积分10
10秒前
biye完成签到,获得积分10
10秒前
Air完成签到,获得积分10
11秒前
11秒前
plm发布了新的文献求助10
12秒前
zcg完成签到,获得积分10
12秒前
李大脑袋完成签到 ,获得积分10
12秒前
海皇星空发布了新的文献求助10
13秒前
13秒前
无语完成签到,获得积分10
13秒前
188的龙完成签到,获得积分10
14秒前
英俊的铭应助海潮采纳,获得10
15秒前
慢慢地漫漫完成签到,获得积分10
15秒前
走远了完成签到,获得积分10
16秒前
石头完成签到 ,获得积分10
16秒前
16秒前
科研通AI2S应助nykal采纳,获得10
17秒前
静静子发布了新的文献求助10
17秒前
勤奋菠萝发布了新的文献求助10
17秒前
chnningji发布了新的文献求助30
18秒前
我是老大应助书羽采纳,获得10
18秒前
123456发布了新的文献求助30
18秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158860
求助须知:如何正确求助?哪些是违规求助? 2810040
关于积分的说明 7885599
捐赠科研通 2468890
什么是DOI,文献DOI怎么找? 1314424
科研通“疑难数据库(出版商)”最低求助积分说明 630616
版权声明 602012