已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Boosting particle swarm optimization by backtracking search algorithm for optimization problems

计算机科学 回溯 粒子群优化 数学优化 局部搜索(优化) 测试套件 元启发式 趋同(经济学) 多群优化 算法 群体行为 Boosting(机器学习) 测试用例 人工智能 机器学习 数学 经济增长 回归分析 经济
作者
Sukanta Nama,Apu Kumar Saha,Sanjoy Chakraborty,Amir H. Gandomi,Laith Abualigah
出处
期刊:Swarm and evolutionary computation [Elsevier BV]
卷期号:79: 101304-101304 被引量:55
标识
DOI:10.1016/j.swevo.2023.101304
摘要

Adjusting the search behaviors of swarm-based algorithms during their execution is a fundamental errand for addressing real-world global optimizing challenges. Along this line, scholars are actively investigating the unvisited areas of a problem domain rationally. Particle Swarm Optimization (PSO), a popular swarm-based optimization algorithm, is broadly applied to resolve different real-world problems because of its more robust searching capacity. However, in some situations, due to an unbalanced trade-off between exploitation and exploration, PSO gets stuck in a suboptimal solution. To overcome this problem, this study proposes a new ensemble algorithm called e-mPSOBSA with the aid of the reformed Backtracking Search Algorithm (BSA) and PSO. The proposed technique first integrates PSO's operational potential and then introduces BSA's exploration capability to help boost global exploration, local exploitation, and an acceptable balance during the quest process. The IEEE CEC 2014 and CEC 2017 test function suite was considered for evaluation. The outcomes were contrasted with 26 state-of-the-art algorithms, including popular PSO and BSA variants. The convergence analysis, diversity analysis, and statistical test were also executed. In addition, the projected e-mPSOBSA was employed to evaluate four unconstrained and seven constrained engineering design problems, and performances were equated with various algorithms. All these analyses endorse the better performance of the suggested e-mPSOBSA for global optimization tasks, search performance, solution accuracy, and convergence rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dj发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
4秒前
5秒前
迅速的完成签到 ,获得积分10
5秒前
静柏发布了新的文献求助10
6秒前
害怕的惜文完成签到,获得积分10
6秒前
ppzz1220发布了新的文献求助10
7秒前
柔弱嵩发布了新的文献求助10
8秒前
9秒前
miki完成签到,获得积分10
9秒前
谢大喵发布了新的文献求助10
9秒前
BareBear应助kris采纳,获得10
10秒前
Eatanicecube完成签到,获得积分10
12秒前
12秒前
温暖的聪展完成签到 ,获得积分10
13秒前
络巫琥发布了新的文献求助10
15秒前
15秒前
16秒前
梅梅也发布了新的文献求助30
16秒前
小七完成签到,获得积分10
16秒前
科研通AI2S应助陈cxz采纳,获得10
17秒前
优美的小夏完成签到,获得积分10
17秒前
18秒前
20秒前
酷炫的冰淇淋完成签到,获得积分10
21秒前
Lucas应助知性的采珊采纳,获得10
22秒前
小杭76应助柔弱嵩采纳,获得10
24秒前
26秒前
26秒前
guojingjing发布了新的文献求助10
26秒前
安小敏发布了新的文献求助10
27秒前
小郑不睡觉完成签到 ,获得积分10
27秒前
28秒前
29秒前
Demon应助酷炫的冰淇淋采纳,获得10
29秒前
30秒前
芸珂发布了新的文献求助10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300903
求助须知:如何正确求助?哪些是违规求助? 4448717
关于积分的说明 13846704
捐赠科研通 4334501
什么是DOI,文献DOI怎么找? 2379689
邀请新用户注册赠送积分活动 1374783
关于科研通互助平台的介绍 1340460