亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Marine Object Segmentation and Tracking by Learning Marine Radar Images for Autonomous Surface Vehicles

人工智能 计算机视觉 计算机科学 雷达 雷达成像 深度学习 分割 雷达跟踪器 图像分割 交叉口(航空) 目标检测 跟踪(教育) 地理 电信 地图学 教育学 心理学
作者
Hanguen Kim,Donghoon Kim,Seung‐Mok Lee
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:23 (9): 10062-10070 被引量:5
标识
DOI:10.1109/jsen.2023.3259471
摘要

This article proposes a radar image segmentation and tracking method by learning radar images for autonomous surface vehicles. To identify marine objects from radar images, we propose a deep neural network named the dual path squeeze and excitation network (DPSE-Net). By learning the radar images, the proposed DPSE-Net is designed to segment every pixel of the radar images into four classes: marine objects, land, noise, and background. The proposed DPSE-Net shows the best performance in radar image segmentation while operating in real-time, compared to state-of-the-art real-time image segmentation network models. In addition, we design a real-time moving object tracking algorithm for estimating the position and velocity of marine objects based on deep simple online real-time tracking with a deep association metric (DeepSORT), a widely used tracking algorithm. The existing DeepSORT algorithm uses the intersection over union (IoU) metric and a deep appearance descriptor for data association, but since they are not suitable for radar images, successive tracking is difficult. To solve this problem, a new data association metric suitable for radar images is proposed. The field tests in ocean environments confirm that the proposed method performs better in marine object segmentation and tracking.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
27秒前
李迅迅发布了新的文献求助10
30秒前
思源应助Lewis采纳,获得10
32秒前
空溟fever完成签到,获得积分10
37秒前
李迅迅完成签到,获得积分10
40秒前
FashionBoy应助科研通管家采纳,获得10
45秒前
Criminology34应助科研通管家采纳,获得10
45秒前
Criminology34应助科研通管家采纳,获得10
45秒前
GPTea完成签到,获得积分0
1分钟前
1分钟前
今后应助薇小薇采纳,获得10
1分钟前
淡定的高山完成签到 ,获得积分10
1分钟前
积极的觅松完成签到 ,获得积分10
1分钟前
fyd60610完成签到,获得积分20
2分钟前
2分钟前
清心淡如水完成签到 ,获得积分10
2分钟前
123123完成签到 ,获得积分10
2分钟前
潇洒的语蝶完成签到 ,获得积分10
2分钟前
LLL完成签到,获得积分10
2分钟前
123完成签到 ,获得积分10
2分钟前
四斤瓜完成签到 ,获得积分10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
搜集达人应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
淡然觅荷完成签到 ,获得积分10
3分钟前
高源伯完成签到 ,获得积分10
3分钟前
勤奋努力完成签到 ,获得积分10
3分钟前
朱一龙完成签到,获得积分10
3分钟前
3分钟前
3分钟前
整齐大楚发布了新的文献求助10
3分钟前
星辰大海应助palmer采纳,获得10
4分钟前
4分钟前
冰西瓜完成签到 ,获得积分0
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4983309
求助须知:如何正确求助?哪些是违规求助? 4234666
关于积分的说明 13189304
捐赠科研通 4026820
什么是DOI,文献DOI怎么找? 2202884
邀请新用户注册赠送积分活动 1215210
关于科研通互助平台的介绍 1132094