A CVAE-GAN-based Approach to Process Imbalanced Datasets for Intrusion Detection in Marine Meteorological Sensor Networks

计算机科学 离群值 数据挖掘 聚类分析 异常检测 鉴定(生物学) 入侵检测系统 过程(计算) 分类器(UML) 人工智能 机器学习 植物 生物 操作系统
作者
Xin Su,Tian Tian,Lei Cai,Baoliu Ye,Hongyan Xing
标识
DOI:10.1109/ispa-bdcloud-socialcom-sustaincom57177.2022.00032
摘要

In marine meteorological sensor networks (MMSN), there are massive data flows transmitted within numerous nodes, resulting in serious potential consequences once any anomalous traffic implied launches an attack. Therefore, accurate identification and fast response to abnormal traffic is vital for intrusion detection system (IDS) constructions. Dataset imbalances cause classification models to erroneously bias to normal traffic, significantly restricting IDS developments and applications. This paper proposes an approach to deal with dataset imbalances in intrusion detections. This approach mitigates dataset imbalance impacts on IDSs from the data perspective, which is liable to process the input data in classification models. In this approach, CVAE-GAN is adopted as the data generation module to synthesize specified minority class samples, thus reducing dataset imbalance rate. ordering points to identify the clustering structure (OPTICS) is taken as the denoising algorithm to remove outliers and decrease the overlap extent between majority classes. An experiment on NSL-KDD dataset demonstrates that the proposed method obtains a high-quality dataset with reasonable distribution. This approach improves the classifier's identification ability for potential anomalous traffic.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助略略略采纳,获得10
刚刚
Ivy发布了新的文献求助10
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
此生不换完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
黄大大发布了新的文献求助10
3秒前
小赵发布了新的文献求助10
3秒前
蜡笔小新完成签到,获得积分10
3秒前
4秒前
4秒前
2010完成签到,获得积分10
4秒前
南桥发布了新的文献求助10
5秒前
5秒前
研友_841KWL完成签到,获得积分10
5秒前
cy完成签到,获得积分10
5秒前
yuanbai应助欢喜蛋挞采纳,获得30
5秒前
朱信姿发布了新的文献求助10
7秒前
NexusExplorer应助yutian采纳,获得10
7秒前
ding应助小太阳采纳,获得10
8秒前
想个昵称怪费劲完成签到,获得积分10
8秒前
UUU完成签到 ,获得积分10
8秒前
8秒前
9秒前
9秒前
10秒前
hyman1218完成签到,获得积分10
10秒前
rrrrrr发布了新的文献求助10
10秒前
11秒前
雪兔妹妹完成签到,获得积分10
12秒前
mailure完成签到,获得积分10
12秒前
华仔应助完美的皮卡丘采纳,获得10
12秒前
小蘑菇应助王富贵采纳,获得10
14秒前
14秒前
小彻完成签到,获得积分10
14秒前
14秒前
夏天搞科研完成签到,获得积分20
14秒前
xrjyjp完成签到,获得积分10
16秒前
Ming发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助30
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718202
求助须知:如何正确求助?哪些是违规求助? 5251289
关于积分的说明 15284999
捐赠科研通 4868486
什么是DOI,文献DOI怎么找? 2614197
邀请新用户注册赠送积分活动 1564030
关于科研通互助平台的介绍 1521515