TransFollower: Long-Sequence Car-Following Trajectory Prediction through Transformer

计算机科学 变压器 弹道 背景(考古学) 编码器 模拟 人工智能 实时计算 工程类 天文 生物 操作系统 电气工程 物理 古生物学 电压
作者
Meixin Zhu,Simon S. Du,Xuesong Wang,Yang Hao,Yang,Ziyuan Pu,Yinhai Wang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2202.03183
摘要

Car-following refers to a control process in which the following vehicle (FV) tries to keep a safe distance between itself and the lead vehicle (LV) by adjusting its acceleration in response to the actions of the vehicle ahead. The corresponding car-following models, which describe how one vehicle follows another vehicle in the traffic flow, form the cornerstone for microscopic traffic simulation and intelligent vehicle development. One major motivation of car-following models is to replicate human drivers' longitudinal driving trajectories. To model the long-term dependency of future actions on historical driving situations, we developed a long-sequence car-following trajectory prediction model based on the attention-based Transformer model. The model follows a general format of encoder-decoder architecture. The encoder takes historical speed and spacing data as inputs and forms a mixed representation of historical driving context using multi-head self-attention. The decoder takes the future LV speed profile as input and outputs the predicted future FV speed profile in a generative way (instead of an auto-regressive way, avoiding compounding errors). Through cross-attention between encoder and decoder, the decoder learns to build a connection between historical driving and future LV speed, based on which a prediction of future FV speed can be obtained. We train and test our model with 112,597 real-world car-following events extracted from the Shanghai Naturalistic Driving Study (SH-NDS). Results show that the model outperforms the traditional intelligent driver model (IDM), a fully connected neural network model, and a long short-term memory (LSTM) based model in terms of long-sequence trajectory prediction accuracy. We also visualized the self-attention and cross-attention heatmaps to explain how the model derives its predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaodong完成签到,获得积分10
刚刚
xu发布了新的文献求助10
1秒前
研友_QQC完成签到,获得积分10
2秒前
2秒前
2秒前
LIXI完成签到,获得积分10
2秒前
快乐的忆山完成签到,获得积分10
2秒前
愉快寒香发布了新的文献求助10
3秒前
4秒前
sjyu1985完成签到,获得积分10
4秒前
天才幸运鱼完成签到,获得积分10
4秒前
郝老头完成签到,获得积分10
5秒前
6秒前
yexing完成签到,获得积分10
6秒前
原野完成签到,获得积分10
7秒前
赖建琛完成签到 ,获得积分10
7秒前
7秒前
8秒前
8秒前
你好完成签到,获得积分10
9秒前
sallyshe完成签到,获得积分10
9秒前
安静的乐松完成签到,获得积分10
9秒前
zhang完成签到,获得积分10
9秒前
有我ID随机吗完成签到,获得积分10
9秒前
皓月当空完成签到,获得积分10
9秒前
高贵觅山完成签到,获得积分10
10秒前
Erizer完成签到,获得积分10
10秒前
双楠应助怡然云朵采纳,获得10
10秒前
司徒涟妖完成签到,获得积分10
10秒前
Yola完成签到,获得积分10
11秒前
情怀应助亮仔采纳,获得10
11秒前
英俊的铭应助普外科老白采纳,获得10
11秒前
ohno耶耶耶完成签到,获得积分10
11秒前
和和完成签到,获得积分10
11秒前
小啊刘呀发布了新的文献求助10
11秒前
12秒前
13秒前
鸣笛应助科研通管家采纳,获得20
13秒前
wind2631完成签到,获得积分10
13秒前
Chanyl发布了新的文献求助10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950021
求助须知:如何正确求助?哪些是违规求助? 3495367
关于积分的说明 11076612
捐赠科研通 3225910
什么是DOI,文献DOI怎么找? 1783346
邀请新用户注册赠送积分活动 867609
科研通“疑难数据库(出版商)”最低求助积分说明 800855