亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A new modification and application of item response theory‐based feature selection for different machine learning tasks

水准点(测量) 计算机科学 特征选择 人工智能 特征(语言学) 机器学习 背景(考古学) 滤波器(信号处理) 任务(项目管理) 选择(遗传算法) 二元分类 二进制数 模式识别(心理学) 分类 数据挖掘 数学 支持向量机 哲学 算术 古生物学 生物 语言学 经济 管理 地理 计算机视觉 大地测量学
作者
Onder Coban
出处
期刊:Concurrency and Computation: Practice and Experience [Wiley]
卷期号:34 (26)
标识
DOI:10.1002/cpe.7282
摘要

Feature selection (FS) is an important step of the existing machine learning (ML) methodology since it often makes it possible to obtain better results using a lower number of features. Hence, in the literature, there exist many studies aiming at proposing a new FS method or improving an existing one in the context of ML. Accordingly, this study presents a new lossy modification of a feature selector which is a specific type of filter-based FS and depends on item response theory. This method computes feature importance in a supervised manner and is previously employed for classical text categorization (TC) task, where it was shown that the selector provided satisfying results on high dimensional and benchmark text datasets. As such, this paper introduces a new modification of this selector along with its new variants and investigates its applicability for different ML tasks other than TC. Experimental results are obtained on 35 different datasets, of which nine are well-known and real-world datasets from the UCI ML repository. Our comparative results with the most popular filter-based FS methods show that it is possible to obtain better results with this new modified selector or one of its variants on the majority of both binary and real-world datasets compared to its well-known peers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助小正采纳,获得10
4秒前
星辰大海应助abc采纳,获得10
17秒前
辉辉完成签到,获得积分10
23秒前
诚心幻莲发布了新的文献求助10
32秒前
包破茧完成签到,获得积分0
35秒前
37秒前
51秒前
Criminology34举报迷路白枫求助涉嫌违规
1分钟前
慕青应助keke采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
MchemG应助hu采纳,获得20
1分钟前
keke发布了新的文献求助10
1分钟前
1分钟前
曾经白亦完成签到 ,获得积分10
1分钟前
doudou发布了新的文献求助10
1分钟前
1分钟前
doudou完成签到,获得积分10
1分钟前
abc发布了新的文献求助10
1分钟前
1分钟前
984295567完成签到,获得积分10
1分钟前
CipherSage应助keke采纳,获得10
1分钟前
genomed应助drsherlock采纳,获得10
1分钟前
韩寒完成签到 ,获得积分10
1分钟前
JEK发布了新的文献求助10
2分钟前
我是老大应助小正采纳,获得10
2分钟前
xuanjiawu完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
keke发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
loser完成签到 ,获得积分10
2分钟前
深情安青应助abc采纳,获得10
2分钟前
安青兰完成签到 ,获得积分10
2分钟前
zeice完成签到 ,获得积分10
2分钟前
2分钟前
王一一完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
理系総合のための生命科学 第5版〜分子・細胞・個体から知る“生命"のしくみ 800
普遍生物学: 物理に宿る生命、生命の紡ぐ物理 800
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5606564
求助须知:如何正确求助?哪些是违规求助? 4691031
关于积分的说明 14866772
捐赠科研通 4707326
什么是DOI,文献DOI怎么找? 2542867
邀请新用户注册赠送积分活动 1508211
关于科研通互助平台的介绍 1472276