A new modification and application of item response theory‐based feature selection for different machine learning tasks

水准点(测量) 计算机科学 特征选择 人工智能 特征(语言学) 机器学习 背景(考古学) 滤波器(信号处理) 任务(项目管理) 选择(遗传算法) 二元分类 二进制数 模式识别(心理学) 分类 数据挖掘 数学 支持向量机 哲学 算术 古生物学 生物 语言学 经济 管理 地理 计算机视觉 大地测量学
作者
Onder Coban
出处
期刊:Concurrency and Computation: Practice and Experience [Wiley]
卷期号:34 (26)
标识
DOI:10.1002/cpe.7282
摘要

Feature selection (FS) is an important step of the existing machine learning (ML) methodology since it often makes it possible to obtain better results using a lower number of features. Hence, in the literature, there exist many studies aiming at proposing a new FS method or improving an existing one in the context of ML. Accordingly, this study presents a new lossy modification of a feature selector which is a specific type of filter-based FS and depends on item response theory. This method computes feature importance in a supervised manner and is previously employed for classical text categorization (TC) task, where it was shown that the selector provided satisfying results on high dimensional and benchmark text datasets. As such, this paper introduces a new modification of this selector along with its new variants and investigates its applicability for different ML tasks other than TC. Experimental results are obtained on 35 different datasets, of which nine are well-known and real-world datasets from the UCI ML repository. Our comparative results with the most popular filter-based FS methods show that it is possible to obtain better results with this new modified selector or one of its variants on the majority of both binary and real-world datasets compared to its well-known peers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文京帅发布了新的文献求助10
刚刚
大个应助权涛采纳,获得10
刚刚
汉堡包应助lmm采纳,获得10
刚刚
shubo完成签到,获得积分10
刚刚
1秒前
biomds完成签到,获得积分10
1秒前
丘比特应助Steven采纳,获得10
1秒前
飘逸的凉面完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
再学一分钟完成签到,获得积分10
2秒前
美丽蕨菜子应助kkkkkkkk采纳,获得10
2秒前
2秒前
大可发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
WILL发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
隐形曼青应助yong采纳,获得10
4秒前
5秒前
搞怪哈密瓜应助望舒采纳,获得10
5秒前
5秒前
科研通AI6应助zlf采纳,获得10
5秒前
白安穗发布了新的文献求助10
5秒前
肖肖完成签到,获得积分10
6秒前
6秒前
权涛完成签到,获得积分10
7秒前
文京帅完成签到,获得积分10
7秒前
7秒前
yls123发布了新的文献求助10
8秒前
8秒前
Yu应助可乐清欢采纳,获得20
8秒前
豆包发布了新的文献求助10
8秒前
297同学完成签到,获得积分20
9秒前
9秒前
裴秀智发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
King Tyrant 720
Lectures in probability theory and mathematical statistics - 3rd Edition 500
The Synthesis of Simplified Analogues of Crambescin B Carboxylic Acid and Their Inhibitory Activity of Voltage-Gated Sodium Channels: New Aspects of Structure–Activity Relationships 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5597673
求助须知:如何正确求助?哪些是违规求助? 4683190
关于积分的说明 14828741
捐赠科研通 4661266
什么是DOI,文献DOI怎么找? 2536776
邀请新用户注册赠送积分活动 1504368
关于科研通互助平台的介绍 1470215