重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

The Novel Method of Magnetic Anomaly Recognition Based on the Fourth Order Aperiodic Stochastic Resonance

非周期图 随机共振 异常(物理) 异常检测 干扰(通信) 磁异常 噪音(视频) 计算机科学 信噪比(成像) 信号(编程语言) 模式识别(心理学) 算法 人工智能 语音识别 物理 数学 电信 组合数学 图像(数学) 频道(广播) 凝聚态物理 程序设计语言 地球物理学
作者
Tao Qin,Lingyun Zhou,Shuai Chen,Zhengxiang Chen
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:22 (17): 17043-17053 被引量:16
标识
DOI:10.1109/jsen.2022.3192668
摘要

In the background of strong interference noise, it is one of the crucial technologies of magnetic anomaly detection system to effectively detect and identify weak magnetic anomaly signals (MAS) gene- rated by targets. The detection and recognition of target signal under very low signal-to-noise ratio(SNR)below −10dB have not been achieved in the existing magnetic anomaly detection technology. To tackle these challenges, this paper proposes a magnetic anomaly recognition method based on fourth-order aperiodic stochastic resonance with the aid of sto- chastic resonance theory. The main nature of new algorithm is a four-layer fusion of single potential well stochastic resonance and has real-time recognition ability for MAS without prior information. When simulated magnetic anomaly signal of single object and mutil-targets were assumed in different condition, effect of parameters of algorithm was analyzed and range of optimal parameters was obtained. Through simulation and experimental verification of targets data, the new algorithm could realize target signal recognition in complex interference environment with SNR lower than −15dB,which demonstrates the efficacy of our proposed method and offer some useful design insights to practical MAD system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Heisenberg应助科研通管家采纳,获得10
刚刚
NexusExplorer应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
深情安青应助科研通管家采纳,获得10
刚刚
刚刚
CipherSage应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
1秒前
小青椒应助科研通管家采纳,获得30
1秒前
1秒前
cp1690完成签到,获得积分10
1秒前
乐乐应助科研通管家采纳,获得80
1秒前
1秒前
我是老大应助科研通管家采纳,获得10
1秒前
1秒前
欣喜芙发布了新的文献求助10
1秒前
深海渔完成签到,获得积分20
2秒前
2秒前
2秒前
ChenChen发布了新的文献求助10
3秒前
3秒前
阿强完成签到,获得积分10
3秒前
科研通AI6应助星辰采纳,获得10
3秒前
3秒前
3秒前
Ava应助123td采纳,获得10
3秒前
盏盏发布了新的文献求助30
4秒前
知知完成签到,获得积分10
4秒前
rose完成签到,获得积分10
5秒前
轻舟发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
5秒前
6秒前
李健的小迷弟应助小白采纳,获得10
6秒前
简单发布了新的文献求助10
6秒前
CodeCraft应助真白硝子采纳,获得20
7秒前
7秒前
7秒前
zhuzhuxia发布了新的文献求助30
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467266
求助须知:如何正确求助?哪些是违规求助? 4570917
关于积分的说明 14327656
捐赠科研通 4497524
什么是DOI,文献DOI怎么找? 2463982
邀请新用户注册赠送积分活动 1452857
关于科研通互助平台的介绍 1427654