HEAT STRESS MODELING USING NEURAL NETWORKS TECHNIQUE

适应性 人工神经网络 热舒适性 风速 地铁列车时刻表 气象学 计算机科学 工作(物理) 相对湿度 热应力 环境科学 航程(航空) 模拟 机器学习 工程类 地理 机械工程 大气科学 航空航天工程 地质学 操作系统 生物 生态学
作者
Aiman Mazhar Qureshi,A. Rachid
出处
期刊:IFAC-PapersOnLine [Elsevier]
卷期号:55 (12): 13-18 被引量:1
标识
DOI:10.1016/j.ifacol.2022.07.281
摘要

Rising temperature especially in summer is currently a hot debate. Scientists around the world have raised concerns about Heat Stress Assessment (HSA). It depends on the urban geometry, building materials, greenery, environmental factor of the region, psychological and behavioral factors of the inhabitants. Effective and accurate heat stress forecasts are useful for managing thermal comfort in the area. A widely used technique is artificial intelligence (AI), especially neural networks, which can be trained on weather variables. In this study, the five most important meteorological parameters such as air temperature, global radiation, relative humidity, surface temperature and wind speed are considered for HSA. System dynamic approach and a new version of the Gated Recurrent Unit (GRU) method is used for the prediction of the mean radiant temperature, the mean predicted vote and the physiological equivalent temperature. GRU is a promising technology, the results with higher accuracy are obtained from this algorithm. The results obtained from the model are validated with the output of reference software named Rayman. Django's graphical user interface was created which allows users to select the range of thermal comfort scales based on their perception which depends on the age factor, local weather adaptability, and habit of tolerating the heat events. It also gives a warning to the user by color code about the level of discomfort which helps them to schedule and manage their outdoor activities. Future work consists of coupling this model with urban greenery factors to analyze the impact on the estimation of heat stress.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6.1应助娜娜采纳,获得10
1秒前
3秒前
3秒前
SONGYEZI完成签到,获得积分0
4秒前
烟花应助xnz采纳,获得30
4秒前
5秒前
7秒前
7秒前
8秒前
SciKid524完成签到 ,获得积分10
9秒前
9秒前
Berne发布了新的文献求助10
9秒前
10秒前
斯文败类应助xh采纳,获得10
10秒前
ljw完成签到 ,获得积分10
10秒前
SciGPT应助1212采纳,获得10
10秒前
清脆南霜完成签到,获得积分10
11秒前
11秒前
bunny发布了新的文献求助10
11秒前
Owen应助伶俐鹤轩采纳,获得20
12秒前
小二郎应助王蕊采纳,获得10
12秒前
12秒前
杨小鸿发布了新的文献求助10
13秒前
dddd发布了新的文献求助10
15秒前
Nara2021发布了新的文献求助10
17秒前
18秒前
183完成签到,获得积分10
19秒前
石头爱科研完成签到,获得积分10
19秒前
20秒前
科研通AI6.1应助bunny采纳,获得10
20秒前
若水完成签到,获得积分0
20秒前
21秒前
cherish完成签到,获得积分10
21秒前
量子星尘发布了新的文献求助30
22秒前
鲨鱼游泳教练完成签到,获得积分10
24秒前
26秒前
27秒前
lsrlsr发布了新的文献求助10
27秒前
华仔应助傻傻的雅寒采纳,获得10
28秒前
王蕊发布了新的文献求助10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742197
求助须知:如何正确求助?哪些是违规求助? 5407018
关于积分的说明 15344388
捐赠科研通 4883635
什么是DOI,文献DOI怎么找? 2625185
邀请新用户注册赠送积分活动 1574043
关于科研通互助平台的介绍 1530978