HEAT STRESS MODELING USING NEURAL NETWORKS TECHNIQUE

适应性 人工神经网络 热舒适性 风速 地铁列车时刻表 气象学 计算机科学 工作(物理) 相对湿度 热应力 环境科学 航程(航空) 模拟 机器学习 工程类 地理 机械工程 大气科学 航空航天工程 地质学 操作系统 生物 生态学
作者
Aiman Mazhar Qureshi,A. Rachid
出处
期刊:IFAC-PapersOnLine [Elsevier]
卷期号:55 (12): 13-18 被引量:1
标识
DOI:10.1016/j.ifacol.2022.07.281
摘要

Rising temperature especially in summer is currently a hot debate. Scientists around the world have raised concerns about Heat Stress Assessment (HSA). It depends on the urban geometry, building materials, greenery, environmental factor of the region, psychological and behavioral factors of the inhabitants. Effective and accurate heat stress forecasts are useful for managing thermal comfort in the area. A widely used technique is artificial intelligence (AI), especially neural networks, which can be trained on weather variables. In this study, the five most important meteorological parameters such as air temperature, global radiation, relative humidity, surface temperature and wind speed are considered for HSA. System dynamic approach and a new version of the Gated Recurrent Unit (GRU) method is used for the prediction of the mean radiant temperature, the mean predicted vote and the physiological equivalent temperature. GRU is a promising technology, the results with higher accuracy are obtained from this algorithm. The results obtained from the model are validated with the output of reference software named Rayman. Django's graphical user interface was created which allows users to select the range of thermal comfort scales based on their perception which depends on the age factor, local weather adaptability, and habit of tolerating the heat events. It also gives a warning to the user by color code about the level of discomfort which helps them to schedule and manage their outdoor activities. Future work consists of coupling this model with urban greenery factors to analyze the impact on the estimation of heat stress.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
邓佳鑫Alan应助ZZQ采纳,获得10
刚刚
1秒前
ZhouXB完成签到,获得积分10
2秒前
大宝剑2号完成签到 ,获得积分10
3秒前
李健应助锅锅采纳,获得10
3秒前
4秒前
4秒前
4秒前
小猪发布了新的文献求助10
4秒前
呆萌的早晨完成签到,获得积分10
4秒前
科研通AI6应助超级佳倍采纳,获得10
5秒前
7秒前
丘比特应助文官采纳,获得10
7秒前
小小应助will采纳,获得10
7秒前
希望天下0贩的0应助ss采纳,获得10
7秒前
Dr_Zhang完成签到,获得积分10
8秒前
含蓄的海完成签到,获得积分10
8秒前
仁爱的梦曼完成签到 ,获得积分10
8秒前
风趣烤鸡发布了新的文献求助10
9秒前
haizz完成签到,获得积分10
10秒前
Orange应助yang采纳,获得10
11秒前
11秒前
香香发布了新的文献求助10
12秒前
12秒前
共享精神应助复杂梦安采纳,获得10
13秒前
13秒前
13秒前
搜集达人应助xio采纳,获得10
14秒前
wzf完成签到 ,获得积分10
14秒前
科研通AI6应助Logan采纳,获得10
14秒前
别当真发布了新的文献求助10
15秒前
15秒前
锦慜发布了新的文献求助10
15秒前
15秒前
Wind应助111采纳,获得10
16秒前
iNk应助你好采纳,获得10
17秒前
17秒前
18秒前
轶Y发布了新的文献求助10
18秒前
阔达宝莹发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637646
求助须知:如何正确求助?哪些是违规求助? 4743795
关于积分的说明 14999969
捐赠科研通 4795812
什么是DOI,文献DOI怎么找? 2562208
邀请新用户注册赠送积分活动 1521661
关于科研通互助平台的介绍 1481646