HEAT STRESS MODELING USING NEURAL NETWORKS TECHNIQUE

适应性 人工神经网络 热舒适性 风速 地铁列车时刻表 气象学 计算机科学 工作(物理) 相对湿度 热应力 环境科学 航程(航空) 模拟 机器学习 工程类 地理 机械工程 大气科学 航空航天工程 地质学 操作系统 生物 生态学
作者
Aiman Mazhar Qureshi,A. Rachid
出处
期刊:IFAC-PapersOnLine [Elsevier BV]
卷期号:55 (12): 13-18 被引量:1
标识
DOI:10.1016/j.ifacol.2022.07.281
摘要

Rising temperature especially in summer is currently a hot debate. Scientists around the world have raised concerns about Heat Stress Assessment (HSA). It depends on the urban geometry, building materials, greenery, environmental factor of the region, psychological and behavioral factors of the inhabitants. Effective and accurate heat stress forecasts are useful for managing thermal comfort in the area. A widely used technique is artificial intelligence (AI), especially neural networks, which can be trained on weather variables. In this study, the five most important meteorological parameters such as air temperature, global radiation, relative humidity, surface temperature and wind speed are considered for HSA. System dynamic approach and a new version of the Gated Recurrent Unit (GRU) method is used for the prediction of the mean radiant temperature, the mean predicted vote and the physiological equivalent temperature. GRU is a promising technology, the results with higher accuracy are obtained from this algorithm. The results obtained from the model are validated with the output of reference software named Rayman. Django's graphical user interface was created which allows users to select the range of thermal comfort scales based on their perception which depends on the age factor, local weather adaptability, and habit of tolerating the heat events. It also gives a warning to the user by color code about the level of discomfort which helps them to schedule and manage their outdoor activities. Future work consists of coupling this model with urban greenery factors to analyze the impact on the estimation of heat stress.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夜城如梦醉完成签到,获得积分10
1秒前
fancy完成签到,获得积分10
1秒前
小曲完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
京城世界完成签到,获得积分10
2秒前
yu发布了新的文献求助10
2秒前
2秒前
花生米一粒粒完成签到,获得积分10
2秒前
2秒前
nn发布了新的文献求助10
3秒前
周周发布了新的文献求助10
3秒前
ddstty完成签到,获得积分10
3秒前
不成文完成签到,获得积分10
3秒前
hao完成签到,获得积分10
4秒前
谦让的夜春完成签到,获得积分10
4秒前
平淡依瑶完成签到,获得积分10
4秒前
火星上友易完成签到,获得积分10
4秒前
时尚书白完成签到,获得积分10
5秒前
友好契完成签到,获得积分10
5秒前
zhishiyumi完成签到,获得积分10
5秒前
要减肥完成签到,获得积分10
5秒前
勤恳的黑夜完成签到 ,获得积分10
5秒前
自由月亮完成签到 ,获得积分10
6秒前
俭朴的寇应助淳于白凝采纳,获得10
6秒前
鸣笛应助AopingZhu采纳,获得10
6秒前
dr_chou完成签到,获得积分20
6秒前
旋881发布了新的文献求助10
6秒前
嘻嗷发布了新的文献求助10
6秒前
ouLniM完成签到 ,获得积分10
6秒前
丘比特应助安然采纳,获得10
6秒前
komorebi完成签到,获得积分10
6秒前
今后应助小栗采纳,获得10
7秒前
现实的青亦完成签到,获得积分10
7秒前
8秒前
lhy完成签到,获得积分10
8秒前
温婉的香水完成签到 ,获得积分10
8秒前
8秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Research Handbook on Law and Political Economy Second Edition 398
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4554852
求助须知:如何正确求助?哪些是违规求助? 3983633
关于积分的说明 12332260
捐赠科研通 3653513
什么是DOI,文献DOI怎么找? 2012588
邀请新用户注册赠送积分活动 1047586
科研通“疑难数据库(出版商)”最低求助积分说明 936051