HEAT STRESS MODELING USING NEURAL NETWORKS TECHNIQUE

适应性 人工神经网络 热舒适性 风速 地铁列车时刻表 气象学 计算机科学 工作(物理) 相对湿度 热应力 环境科学 航程(航空) 模拟 机器学习 工程类 地理 机械工程 大气科学 航空航天工程 地质学 操作系统 生物 生态学
作者
Aiman Mazhar Qureshi,A. Rachid
出处
期刊:IFAC-PapersOnLine [Elsevier BV]
卷期号:55 (12): 13-18 被引量:1
标识
DOI:10.1016/j.ifacol.2022.07.281
摘要

Rising temperature especially in summer is currently a hot debate. Scientists around the world have raised concerns about Heat Stress Assessment (HSA). It depends on the urban geometry, building materials, greenery, environmental factor of the region, psychological and behavioral factors of the inhabitants. Effective and accurate heat stress forecasts are useful for managing thermal comfort in the area. A widely used technique is artificial intelligence (AI), especially neural networks, which can be trained on weather variables. In this study, the five most important meteorological parameters such as air temperature, global radiation, relative humidity, surface temperature and wind speed are considered for HSA. System dynamic approach and a new version of the Gated Recurrent Unit (GRU) method is used for the prediction of the mean radiant temperature, the mean predicted vote and the physiological equivalent temperature. GRU is a promising technology, the results with higher accuracy are obtained from this algorithm. The results obtained from the model are validated with the output of reference software named Rayman. Django's graphical user interface was created which allows users to select the range of thermal comfort scales based on their perception which depends on the age factor, local weather adaptability, and habit of tolerating the heat events. It also gives a warning to the user by color code about the level of discomfort which helps them to schedule and manage their outdoor activities. Future work consists of coupling this model with urban greenery factors to analyze the impact on the estimation of heat stress.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
九次方完成签到,获得积分10
刚刚
刚刚
anan完成签到,获得积分10
刚刚
刚刚
赵冉发布了新的文献求助20
1秒前
jfz完成签到,获得积分10
1秒前
jtyt完成签到,获得积分10
1秒前
爆米花应助布丁采纳,获得10
1秒前
李健的小迷弟应助布丁采纳,获得10
1秒前
Orange应助布丁采纳,获得10
1秒前
斯文败类应助布丁采纳,获得10
1秒前
斯文败类应助布丁采纳,获得10
1秒前
Owen应助布丁采纳,获得10
2秒前
Rosaline完成签到 ,获得积分10
2秒前
2秒前
keeptg完成签到 ,获得积分10
2秒前
张杰完成签到 ,获得积分10
3秒前
认真的雪完成签到,获得积分10
3秒前
ChenXinde完成签到,获得积分10
4秒前
斯文听寒完成签到 ,获得积分10
4秒前
5秒前
奔跑的蒲公英完成签到,获得积分10
5秒前
yian007完成签到,获得积分10
5秒前
yiren发布了新的文献求助10
5秒前
好学泡泡完成签到,获得积分20
5秒前
5秒前
5秒前
我是老大应助YING采纳,获得10
6秒前
7秒前
小蘑菇应助仁爱的觅夏采纳,获得30
7秒前
cadnash完成签到,获得积分10
7秒前
花Cheung完成签到,获得积分10
7秒前
砍柴少年发布了新的文献求助10
7秒前
刘佳明完成签到,获得积分10
7秒前
丙子哥发布了新的文献求助10
7秒前
8秒前
小王发布了新的文献求助10
9秒前
9秒前
慕昊强完成签到,获得积分10
9秒前
zxdnbb发布了新的文献求助10
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950179
求助须知:如何正确求助?哪些是违规求助? 3495612
关于积分的说明 11077812
捐赠科研通 3226090
什么是DOI,文献DOI怎么找? 1783470
邀请新用户注册赠送积分活动 867687
科研通“疑难数据库(出版商)”最低求助积分说明 800874