HEAT STRESS MODELING USING NEURAL NETWORKS TECHNIQUE

适应性 人工神经网络 热舒适性 风速 地铁列车时刻表 气象学 计算机科学 工作(物理) 相对湿度 热应力 环境科学 航程(航空) 模拟 机器学习 工程类 地理 机械工程 大气科学 航空航天工程 地质学 操作系统 生物 生态学
作者
Aiman Mazhar Qureshi,A. Rachid
出处
期刊:IFAC-PapersOnLine [Elsevier]
卷期号:55 (12): 13-18 被引量:1
标识
DOI:10.1016/j.ifacol.2022.07.281
摘要

Rising temperature especially in summer is currently a hot debate. Scientists around the world have raised concerns about Heat Stress Assessment (HSA). It depends on the urban geometry, building materials, greenery, environmental factor of the region, psychological and behavioral factors of the inhabitants. Effective and accurate heat stress forecasts are useful for managing thermal comfort in the area. A widely used technique is artificial intelligence (AI), especially neural networks, which can be trained on weather variables. In this study, the five most important meteorological parameters such as air temperature, global radiation, relative humidity, surface temperature and wind speed are considered for HSA. System dynamic approach and a new version of the Gated Recurrent Unit (GRU) method is used for the prediction of the mean radiant temperature, the mean predicted vote and the physiological equivalent temperature. GRU is a promising technology, the results with higher accuracy are obtained from this algorithm. The results obtained from the model are validated with the output of reference software named Rayman. Django's graphical user interface was created which allows users to select the range of thermal comfort scales based on their perception which depends on the age factor, local weather adaptability, and habit of tolerating the heat events. It also gives a warning to the user by color code about the level of discomfort which helps them to schedule and manage their outdoor activities. Future work consists of coupling this model with urban greenery factors to analyze the impact on the estimation of heat stress.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
铁岭砍王发布了新的文献求助10
1秒前
1秒前
Jasper应助Antares采纳,获得10
1秒前
Akim应助自然莫英采纳,获得10
2秒前
2秒前
2秒前
2秒前
yuu发布了新的文献求助10
3秒前
无极微光应助wuuw采纳,获得20
3秒前
3秒前
仲谋发布了新的文献求助10
4秒前
愉快寄真完成签到,获得积分10
4秒前
zhanglan完成签到,获得积分10
4秒前
奈思完成签到 ,获得积分10
6秒前
6秒前
6秒前
英俊的铭应助糟糕的铁锤采纳,获得10
6秒前
ssu发布了新的文献求助10
7秒前
麦克阿宇完成签到 ,获得积分10
8秒前
南海神尼发布了新的文献求助10
9秒前
坦率灵槐应助科研通管家采纳,获得10
10秒前
Booiys完成签到,获得积分10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
CodeCraft应助科研通管家采纳,获得10
10秒前
研友_qZ6V1Z应助科研通管家采纳,获得10
10秒前
Owen应助科研通管家采纳,获得10
10秒前
大模型应助科研通管家采纳,获得30
10秒前
ccm应助科研通管家采纳,获得10
10秒前
ccm应助科研通管家采纳,获得10
10秒前
在水一方应助科研通管家采纳,获得10
10秒前
11秒前
干净寻冬应助科研通管家采纳,获得10
11秒前
坦率灵槐应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
英俊的铭应助科研通管家采纳,获得10
11秒前
ccm应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
BowieHuang应助科研通管家采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642496
求助须知:如何正确求助?哪些是违规求助? 4758935
关于积分的说明 15017747
捐赠科研通 4801078
什么是DOI,文献DOI怎么找? 2566357
邀请新用户注册赠送积分活动 1524465
关于科研通互助平台的介绍 1483995