Cucurbit[7]uril Macrocyclic Sensors for Optical Fingerprinting: Predicting Protein Structural Changes to Identifying Disease-Specific Amyloid Assemblies

化学 生物分子 荧光团 分子识别 折叠(DSP实现) 荧光 指纹(计算) 蛋白质折叠 生物物理学 淀粉样蛋白(真菌学) 计算生物学 分子 生物化学 生物 工程类 有机化学 无机化学 物理 电气工程 量子力学 计算机科学 计算机安全
作者
Nilanjana Das Saha,Soumen Pradhan,Ranjan Sasmal,Aritra Sarkar,Christian M. Berač,Jonas C. Kölsch,Meenakshi Pahwa,Sushanta Show,Yves Rozenholc,Zeki Topçu,Vivien Alessandrini,Jean Gadrey,Vassilis Tsatsaris,Nathalie Gagey‐Eilstein,Sarit S. Agasti
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:144 (31): 14363-14379 被引量:14
标识
DOI:10.1021/jacs.2c05969
摘要

In a three-dimensional (3D) representation, each protein molecule displays a specific pattern of chemical and topological features, which are altered during its misfolding and aggregation pathway. Generating a recognizable fingerprint from such features could provide an enticing approach not only to identify these biomolecules but also to gain clues regarding their folding state and the occurrence of pathologically lethal misfolded aggregates. We report here a universal strategy to generate a fluorescent fingerprint from biomolecules by employing the pan-selective molecular recognition feature of a cucurbit[7]uril (CB[7]) macrocyclic receptor. We implemented a direct sensing strategy by covalently tethering CB[7] with a library of fluorescent reporters. When CB[7] recognizes the chemical and geometrical features of a biomolecule, it brings the tethered fluorophore into the vicinity, concomitantly reporting the nature of its binding microenvironment through a change in their optical signature. The photophysical properties of the fluorophores allow a multitude of probing modes, while their structural features provide additional binding diversity, generating a distinct fluorescence fingerprint from the biomolecule. We first used this strategy to rapidly discriminate a diverse range of protein analytes. The macrocyclic sensor was then applied to probe conformational changes in the protein structure and identify the formation of oligomeric and fibrillar species from misfolded proteins. Notably, the sensor system allowed us to differentiate between different self-assembled forms of the disease-specific amyloid-β (Aβ) aggregates and segregated them from other generic amyloid structures with a 100% identification accuracy. Ultimately, this sensor system predicted clinically relevant changes by fingerprinting serum samples from a cohort of pregnant women.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
TT发布了新的文献求助10
2秒前
啊实打实发布了新的文献求助10
2秒前
yam001发布了新的文献求助30
3秒前
Stanley完成签到,获得积分10
3秒前
LONG发布了新的文献求助10
3秒前
亮亮发布了新的文献求助50
3秒前
LZQ应助细心的小蜜蜂采纳,获得30
4秒前
艺玲发布了新的文献求助10
4秒前
小二郎应助Seven采纳,获得10
4秒前
设计狂魔完成签到,获得积分10
4秒前
4秒前
5秒前
韭黄发布了新的文献求助10
5秒前
科研小白完成签到,获得积分10
5秒前
6秒前
9℃发布了新的文献求助10
6秒前
甩看文献完成签到,获得积分10
6秒前
6秒前
欣喜书桃关注了科研通微信公众号
7秒前
7秒前
真实的熊猫完成签到,获得积分10
7秒前
小张不慌完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
8秒前
十三完成签到,获得积分10
9秒前
juan发布了新的文献求助10
9秒前
丘比特应助白小白采纳,获得10
9秒前
9秒前
晓军发布了新的文献求助20
9秒前
10秒前
zxl完成签到,获得积分10
11秒前
专心搞学术完成签到,获得积分10
11秒前
FFF发布了新的文献求助10
11秒前
李小胖发布了新的文献求助20
11秒前
李健应助故意的绿竹采纳,获得10
11秒前
勤恳的断秋完成签到 ,获得积分10
12秒前
VDC发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762