An efficient algorithm for task allocation with the budget constraint

计算机科学 任务(项目管理) 约束(计算机辅助设计) 预算约束 数学优化 算法 人工智能 数学 管理 新古典经济学 经济 几何学
作者
Qinyuan Li,Minyi Li,Quoc Bao Vo,Ryszard Kowalczyk
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:210: 118279-118279 被引量:8
标识
DOI:10.1016/j.eswa.2022.118279
摘要

This paper studies a heterogeneous task allocation problem with the budget constraint. Existing works on task allocation mainly tackle this well-known NP-hard problem from an optimisation perspective. They have not been able to cater to the extra needs of scalability and robustness in large-scale systems. Furthermore, some general allocation mechanisms do not consider system budget and agent cost. Thus, they can not guarantee to obtain valid solutions when the budget is constrained. This paper models the task allocation problem as a game whose players are the agents to be assigned to the teams working on the tasks, and align the task allocation objective (i.e., system optimality) with the game-theoretic solution concept of Nash equilibrium. Based on this formulation, a novel algorithm, called CF , is proposed in this paper. CF searches for a valid Nash equilibrium solution using a greedy strategy that aims to improve system utility while takes into consideration of the overall system budget constraint. CF is a scalable, anytime, and monotonic algorithm, which in turn, makes it robust for the deployment in large-scale systems. CF can also be used as a local search algorithm for improving the quality of any existing valid allocation solution. Comprehensive empirical studies have been carried out in this paper to demonstrate that CF is effective in all budget states and achieves a solution quality better than the state-of-the-art algorithms. • The objective in task allocation is aligned with Nash equilibrium in game theory. • The proposed algorithm can be used as a local search algorithm. • The proposed algorithm guarantees the return of a valid Nash equilibrium solution. • The proposed algorithm is an “anytime” and “monotonic” algorithm. • The proposed algorithm is computationally efficient and highly scalable.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Li应助hsa_ID采纳,获得10
刚刚
微信研友发布了新的文献求助10
刚刚
阿乔发布了新的文献求助10
1秒前
嘿嘿嘿发布了新的文献求助10
1秒前
完美星落完成签到,获得积分10
1秒前
wuhao1完成签到,获得积分20
1秒前
liaoyu发布了新的文献求助10
1秒前
香蕉觅云应助XIAONIE25采纳,获得10
2秒前
guojingjing发布了新的文献求助10
2秒前
lilei发布了新的文献求助10
2秒前
达奚多思完成签到,获得积分10
2秒前
2秒前
纯真忆安发布了新的文献求助10
2秒前
2秒前
RRRRR1完成签到,获得积分20
2秒前
修马儿完成签到,获得积分10
3秒前
科研通AI6应助二胡儿采纳,获得10
3秒前
夕未息关注了科研通微信公众号
3秒前
科目三应助乐乐侠采纳,获得10
4秒前
小管完成签到,获得积分10
4秒前
ZCM发布了新的文献求助10
4秒前
4秒前
暴躁的夏之完成签到,获得积分10
4秒前
4秒前
文思泉涌完成签到,获得积分10
4秒前
ahua完成签到 ,获得积分10
5秒前
虚心早晨完成签到,获得积分10
5秒前
满意静丹发布了新的文献求助10
5秒前
mtj发布了新的文献求助10
5秒前
5秒前
5秒前
叶长安完成签到,获得积分20
6秒前
任虎完成签到,获得积分10
6秒前
6秒前
dangniuma完成签到 ,获得积分10
6秒前
自信的谷南完成签到,获得积分10
6秒前
6秒前
王小红发布了新的文献求助10
7秒前
魏铭哲发布了新的文献求助10
7秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629869
求助须知:如何正确求助?哪些是违规求助? 4720921
关于积分的说明 14971132
捐赠科研通 4787826
什么是DOI,文献DOI怎么找? 2556570
邀请新用户注册赠送积分活动 1517709
关于科研通互助平台的介绍 1478285