An efficient algorithm for task allocation with the budget constraint

计算机科学 任务(项目管理) 约束(计算机辅助设计) 预算约束 数学优化 算法 人工智能 数学 管理 新古典经济学 经济 几何学
作者
Qinyuan Li,Minyi Li,Quoc Bao Vo,Ryszard Kowalczyk
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:210: 118279-118279 被引量:8
标识
DOI:10.1016/j.eswa.2022.118279
摘要

This paper studies a heterogeneous task allocation problem with the budget constraint. Existing works on task allocation mainly tackle this well-known NP-hard problem from an optimisation perspective. They have not been able to cater to the extra needs of scalability and robustness in large-scale systems. Furthermore, some general allocation mechanisms do not consider system budget and agent cost. Thus, they can not guarantee to obtain valid solutions when the budget is constrained. This paper models the task allocation problem as a game whose players are the agents to be assigned to the teams working on the tasks, and align the task allocation objective (i.e., system optimality) with the game-theoretic solution concept of Nash equilibrium. Based on this formulation, a novel algorithm, called CF , is proposed in this paper. CF searches for a valid Nash equilibrium solution using a greedy strategy that aims to improve system utility while takes into consideration of the overall system budget constraint. CF is a scalable, anytime, and monotonic algorithm, which in turn, makes it robust for the deployment in large-scale systems. CF can also be used as a local search algorithm for improving the quality of any existing valid allocation solution. Comprehensive empirical studies have been carried out in this paper to demonstrate that CF is effective in all budget states and achieves a solution quality better than the state-of-the-art algorithms. • The objective in task allocation is aligned with Nash equilibrium in game theory. • The proposed algorithm can be used as a local search algorithm. • The proposed algorithm guarantees the return of a valid Nash equilibrium solution. • The proposed algorithm is an “anytime” and “monotonic” algorithm. • The proposed algorithm is computationally efficient and highly scalable.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助满意元枫采纳,获得10
刚刚
fanny发布了新的文献求助10
刚刚
1秒前
hxh发布了新的文献求助10
2秒前
2105完成签到,获得积分10
2秒前
3秒前
谨慎的谷槐完成签到,获得积分10
3秒前
chuanxue发布了新的文献求助10
3秒前
来日方长发布了新的文献求助10
3秒前
公西凝芙发布了新的文献求助10
4秒前
FashionBoy应助执着柏柳采纳,获得10
5秒前
瘦瘦小萱完成签到 ,获得积分10
5秒前
Hello应助悟空采纳,获得30
6秒前
jy完成签到,获得积分10
6秒前
1234发布了新的文献求助10
7秒前
hxh完成签到,获得积分10
8秒前
9秒前
9秒前
工藤新一完成签到,获得积分10
10秒前
11秒前
11秒前
pengivy发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
12秒前
端庄一刀发布了新的文献求助10
14秒前
14秒前
15秒前
研友_VZG7GZ应助公西凝芙采纳,获得10
15秒前
记得笑发布了新的文献求助10
17秒前
墨123完成签到,获得积分10
18秒前
19秒前
优美紫槐发布了新的文献求助10
19秒前
20秒前
hahhh7发布了新的文献求助10
21秒前
来日方长完成签到 ,获得积分10
22秒前
22秒前
Jasper应助Lolo采纳,获得10
22秒前
墨123发布了新的文献求助10
23秒前
打发打发的发到付电费完成签到 ,获得积分10
23秒前
Aurora发布了新的文献求助10
24秒前
岑岑岑完成签到,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
理系総合のための生命科学 第5版〜分子・細胞・個体から知る“生命"のしくみ 800
普遍生物学: 物理に宿る生命、生命の紡ぐ物理 800
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5606214
求助须知:如何正确求助?哪些是违规求助? 4690656
关于积分的说明 14864955
捐赠科研通 4704298
什么是DOI,文献DOI怎么找? 2542488
邀请新用户注册赠送积分活动 1508024
关于科研通互助平台的介绍 1472232