An efficient algorithm for task allocation with the budget constraint

计算机科学 任务(项目管理) 约束(计算机辅助设计) 预算约束 数学优化 算法 人工智能 数学 管理 新古典经济学 经济 几何学
作者
Qinyuan Li,Minyi Li,Quoc Bao Vo,Ryszard Kowalczyk
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:210: 118279-118279 被引量:8
标识
DOI:10.1016/j.eswa.2022.118279
摘要

This paper studies a heterogeneous task allocation problem with the budget constraint. Existing works on task allocation mainly tackle this well-known NP-hard problem from an optimisation perspective. They have not been able to cater to the extra needs of scalability and robustness in large-scale systems. Furthermore, some general allocation mechanisms do not consider system budget and agent cost. Thus, they can not guarantee to obtain valid solutions when the budget is constrained. This paper models the task allocation problem as a game whose players are the agents to be assigned to the teams working on the tasks, and align the task allocation objective (i.e., system optimality) with the game-theoretic solution concept of Nash equilibrium. Based on this formulation, a novel algorithm, called CF , is proposed in this paper. CF searches for a valid Nash equilibrium solution using a greedy strategy that aims to improve system utility while takes into consideration of the overall system budget constraint. CF is a scalable, anytime, and monotonic algorithm, which in turn, makes it robust for the deployment in large-scale systems. CF can also be used as a local search algorithm for improving the quality of any existing valid allocation solution. Comprehensive empirical studies have been carried out in this paper to demonstrate that CF is effective in all budget states and achieves a solution quality better than the state-of-the-art algorithms. • The objective in task allocation is aligned with Nash equilibrium in game theory. • The proposed algorithm can be used as a local search algorithm. • The proposed algorithm guarantees the return of a valid Nash equilibrium solution. • The proposed algorithm is an “anytime” and “monotonic” algorithm. • The proposed algorithm is computationally efficient and highly scalable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
余南发布了新的文献求助10
刚刚
SciGPT应助34101127采纳,获得10
刚刚
lijg71完成签到,获得积分20
刚刚
1秒前
1秒前
1秒前
bab发布了新的文献求助10
1秒前
1秒前
1秒前
李健应助nana采纳,获得10
2秒前
薇薇辣完成签到 ,获得积分10
2秒前
lkh完成签到,获得积分10
2秒前
gaogao完成签到,获得积分10
2秒前
3秒前
yang完成签到,获得积分10
4秒前
4秒前
简单的小土豆完成签到 ,获得积分10
5秒前
5秒前
123发布了新的文献求助10
5秒前
Orange应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
顾矜应助科研通管家采纳,获得10
6秒前
英俊的铭应助科研通管家采纳,获得10
6秒前
6秒前
桐桐应助科研通管家采纳,获得10
6秒前
完美世界应助科研通管家采纳,获得60
6秒前
上官若男应助科研通管家采纳,获得10
6秒前
6秒前
风中的笑白完成签到,获得积分10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
6秒前
浮游应助科研通管家采纳,获得10
6秒前
脑洞疼应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
CipherSage应助科研通管家采纳,获得10
6秒前
7秒前
7秒前
lkh发布了新的文献求助10
8秒前
所所应助shuyan采纳,获得10
8秒前
天天快乐应助lijg71采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430372
求助须知:如何正确求助?哪些是违规求助? 4543585
关于积分的说明 14188041
捐赠科研通 4461764
什么是DOI,文献DOI怎么找? 2446288
邀请新用户注册赠送积分活动 1437689
关于科研通互助平台的介绍 1414458