An efficient algorithm for task allocation with the budget constraint

计算机科学 任务(项目管理) 约束(计算机辅助设计) 预算约束 数学优化 算法 人工智能 数学 管理 新古典经济学 经济 几何学
作者
Qinyuan Li,Minyi Li,Quoc Bao Vo,Ryszard Kowalczyk
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:210: 118279-118279 被引量:8
标识
DOI:10.1016/j.eswa.2022.118279
摘要

This paper studies a heterogeneous task allocation problem with the budget constraint. Existing works on task allocation mainly tackle this well-known NP-hard problem from an optimisation perspective. They have not been able to cater to the extra needs of scalability and robustness in large-scale systems. Furthermore, some general allocation mechanisms do not consider system budget and agent cost. Thus, they can not guarantee to obtain valid solutions when the budget is constrained. This paper models the task allocation problem as a game whose players are the agents to be assigned to the teams working on the tasks, and align the task allocation objective (i.e., system optimality) with the game-theoretic solution concept of Nash equilibrium. Based on this formulation, a novel algorithm, called CF , is proposed in this paper. CF searches for a valid Nash equilibrium solution using a greedy strategy that aims to improve system utility while takes into consideration of the overall system budget constraint. CF is a scalable, anytime, and monotonic algorithm, which in turn, makes it robust for the deployment in large-scale systems. CF can also be used as a local search algorithm for improving the quality of any existing valid allocation solution. Comprehensive empirical studies have been carried out in this paper to demonstrate that CF is effective in all budget states and achieves a solution quality better than the state-of-the-art algorithms. • The objective in task allocation is aligned with Nash equilibrium in game theory. • The proposed algorithm can be used as a local search algorithm. • The proposed algorithm guarantees the return of a valid Nash equilibrium solution. • The proposed algorithm is an “anytime” and “monotonic” algorithm. • The proposed algorithm is computationally efficient and highly scalable.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
BowieHuang应助老北京采纳,获得10
1秒前
丘比特应助老北京采纳,获得10
1秒前
1秒前
1秒前
Jasper应助随影采纳,获得10
2秒前
jiunuan应助天才包采纳,获得30
3秒前
3秒前
深情安青应助无聊的新波采纳,获得10
3秒前
希遇安发布了新的文献求助10
3秒前
77qoq完成签到 ,获得积分20
4秒前
KUN发布了新的文献求助10
4秒前
wanx-完成签到,获得积分20
4秒前
桐桐应助Mtoc采纳,获得10
5秒前
无花果应助和谐的饼干采纳,获得50
5秒前
英俊的铭应助deletelzr采纳,获得10
5秒前
5秒前
完美世界应助racill采纳,获得10
5秒前
6秒前
abu完成签到,获得积分10
6秒前
6秒前
无限符号完成签到,获得积分10
6秒前
科研通AI6应助zhenqiqin采纳,获得10
7秒前
好奇宝宝发布了新的文献求助10
7秒前
wanx-发布了新的文献求助80
8秒前
汉堡包应助渊_采纳,获得10
9秒前
9秒前
jianlong0206完成签到 ,获得积分10
9秒前
默默犀牛完成签到 ,获得积分10
9秒前
清爽安青发布了新的文献求助10
9秒前
9秒前
10秒前
南风不竞发布了新的文献求助10
10秒前
JamesPei应助可可豆战士采纳,获得10
11秒前
浮游应助芝士采纳,获得10
11秒前
jiunuan应助芝士采纳,获得10
11秒前
顾矜应助芝士采纳,获得10
11秒前
香蕉觅云应助wzg666采纳,获得10
11秒前
13秒前
脑洞疼应助77qoq采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536588
求助须知:如何正确求助?哪些是违规求助? 4624228
关于积分的说明 14591085
捐赠科研通 4564722
什么是DOI,文献DOI怎么找? 2501884
邀请新用户注册赠送积分活动 1480627
关于科研通互助平台的介绍 1451937