On Maximising the Vertex Coverage for ${\text{Top}}-k$ t-Bicliques in Bipartite Graphs

完全二部图 二部图 顶点(图论) 组合数学 计算机科学 枚举 指数函数 集合(抽象数据类型) 算法 离散数学 数学 图形 数学分析 程序设计语言
作者
Aman Abidi,Lu Chen,Chengfei Liu,Rui Zhou
标识
DOI:10.1109/icde53745.2022.00221
摘要

Enumeration of all maximal bicliques in bipartite graphs is a well-studied fundamental problem. However, a wide range of applications need less overlapping bicliques with specific size constraints instead of all the maximal bicliques. In this paper, we study a new biclique problem, called the top-k t-biclique coverage problem. A t-biclique is a biclique with a size constraint $t$ for one vertex set and the problem aims to find $k$ t-bicliques maximising the coverage on the other vertex set. The top-k t-biclique coverage problem has novel applications such as finding top-k courses while maximising student engagement. We prove that this problem is NP-hard. A straightforward way to address the problem first needs to enumerate and store all t-bicliques and then greedily select $k$ promising t-bicliques, leading an approximate guarantee on the coverage. However, it takes exponential space, which is impractical. We then apply a fast approximation scheme to solve this problem, which shaves the exponential space consumption by progressively updating top-k results during the t-biclique enumeration. Observing that the fast approximation algorithm takes too much time on updating the results due to the coverage is computed from scratch for each update, an online index is devised to address the drawback. Due the hardness of the problem, even the fast approximation algorithm cannot scale to large dataset. To devise a scalable solution, we then propose a heuristic algorithm running in polynomial time. Thanks for four carefully designed heuristic rules, the heuristic algorithm can find large coverage top-k t-bicliques extremely fast for large datasets. Apart from that, the heuristic result with large coverage can effectively prune unpromising enumerations in the fast greedy algorithm, which improves the efficiency of the fast approximation algorithm without compromising the approximation ratio. Extensive experiments are conducted on real datasets to justify the effectiveness and efficiency of the proposed algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yyyyxxxg完成签到,获得积分10
1秒前
科研通AI2S应助学术laji采纳,获得10
3秒前
韶华若锦完成签到 ,获得积分10
3秒前
雷乾完成签到,获得积分10
4秒前
落落完成签到 ,获得积分0
5秒前
Gu发布了新的文献求助10
6秒前
吸尘器完成签到 ,获得积分10
6秒前
慕言完成签到 ,获得积分10
9秒前
耍酷的冷雪完成签到,获得积分10
9秒前
做不了一点科研完成签到 ,获得积分10
10秒前
wgl200212完成签到,获得积分10
11秒前
温暖霸完成签到,获得积分10
11秒前
四糸乃完成签到,获得积分10
11秒前
St雪完成签到,获得积分10
11秒前
菜头完成签到,获得积分10
14秒前
万里完成签到,获得积分10
15秒前
15940203654完成签到 ,获得积分10
15秒前
orange应助医无止境采纳,获得10
16秒前
xixi很困完成签到 ,获得积分10
16秒前
犹豫的若男完成签到,获得积分10
18秒前
鸡蛋完成签到 ,获得积分10
18秒前
hsiuf完成签到,获得积分10
20秒前
Gu完成签到,获得积分10
20秒前
闻巷雨完成签到 ,获得积分10
21秒前
一八四完成签到,获得积分10
23秒前
大琪哥哥要顺利毕业完成签到 ,获得积分10
23秒前
顾矜应助DR.zhang采纳,获得10
24秒前
疯子不风完成签到,获得积分10
24秒前
mm完成签到 ,获得积分10
25秒前
KingHok完成签到,获得积分10
26秒前
ccx完成签到,获得积分10
27秒前
执着新蕾完成签到,获得积分10
27秒前
pppra完成签到,获得积分10
28秒前
lihaichuan完成签到,获得积分10
28秒前
笑点低的凉面完成签到,获得积分10
29秒前
活力数据线完成签到,获得积分10
30秒前
31秒前
poly完成签到,获得积分10
31秒前
典雅三颜完成签到 ,获得积分10
32秒前
聂先生完成签到,获得积分10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5188343
求助须知:如何正确求助?哪些是违规求助? 4372620
关于积分的说明 13613734
捐赠科研通 4225939
什么是DOI,文献DOI怎么找? 2318042
邀请新用户注册赠送积分活动 1316607
关于科研通互助平台的介绍 1266283