On Maximising the Vertex Coverage for ${\text{Top}}-k$ t-Bicliques in Bipartite Graphs

完全二部图 二部图 顶点(图论) 组合数学 计算机科学 枚举 指数函数 集合(抽象数据类型) 算法 离散数学 数学 图形 数学分析 程序设计语言
作者
Aman Abidi,Lu Chen,Chengfei Liu,Rui Zhou
标识
DOI:10.1109/icde53745.2022.00221
摘要

Enumeration of all maximal bicliques in bipartite graphs is a well-studied fundamental problem. However, a wide range of applications need less overlapping bicliques with specific size constraints instead of all the maximal bicliques. In this paper, we study a new biclique problem, called the top-k t-biclique coverage problem. A t-biclique is a biclique with a size constraint $t$ for one vertex set and the problem aims to find $k$ t-bicliques maximising the coverage on the other vertex set. The top-k t-biclique coverage problem has novel applications such as finding top-k courses while maximising student engagement. We prove that this problem is NP-hard. A straightforward way to address the problem first needs to enumerate and store all t-bicliques and then greedily select $k$ promising t-bicliques, leading an approximate guarantee on the coverage. However, it takes exponential space, which is impractical. We then apply a fast approximation scheme to solve this problem, which shaves the exponential space consumption by progressively updating top-k results during the t-biclique enumeration. Observing that the fast approximation algorithm takes too much time on updating the results due to the coverage is computed from scratch for each update, an online index is devised to address the drawback. Due the hardness of the problem, even the fast approximation algorithm cannot scale to large dataset. To devise a scalable solution, we then propose a heuristic algorithm running in polynomial time. Thanks for four carefully designed heuristic rules, the heuristic algorithm can find large coverage top-k t-bicliques extremely fast for large datasets. Apart from that, the heuristic result with large coverage can effectively prune unpromising enumerations in the fast greedy algorithm, which improves the efficiency of the fast approximation algorithm without compromising the approximation ratio. Extensive experiments are conducted on real datasets to justify the effectiveness and efficiency of the proposed algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Eureka发布了新的文献求助10
刚刚
钵钵鸡完成签到 ,获得积分20
1秒前
JJ完成签到,获得积分10
1秒前
doctorbin完成签到 ,获得积分10
2秒前
深情安青应助龙共采纳,获得10
3秒前
dddd完成签到 ,获得积分10
4秒前
小付完成签到,获得积分10
8秒前
Bonnie关注了科研通微信公众号
9秒前
9秒前
研路漫漫应助吴书维采纳,获得10
9秒前
小狗完成签到 ,获得积分10
10秒前
12秒前
慕青应助Boniu_wang采纳,获得10
14秒前
研路漫漫应助Xiaoxiao采纳,获得10
14秒前
江南烟雨如笙完成签到 ,获得积分10
14秒前
lp发布了新的文献求助10
16秒前
一直发布了新的文献求助10
16秒前
18秒前
Ava应助JacksonHe采纳,获得10
20秒前
20秒前
莫氓完成签到,获得积分10
21秒前
22秒前
wang完成签到 ,获得积分10
22秒前
打打应助Science采纳,获得10
22秒前
24秒前
研路漫漫发布了新的文献求助10
26秒前
27秒前
风清扬发布了新的文献求助30
27秒前
酷波er应助科研进化中采纳,获得10
27秒前
准了完成签到,获得积分20
29秒前
JamesPei应助义气绿柳采纳,获得10
31秒前
32秒前
宋祝福完成签到 ,获得积分10
32秒前
34秒前
35秒前
龙共发布了新的文献求助10
36秒前
JamesPei应助000采纳,获得10
37秒前
Science完成签到,获得积分10
37秒前
qwf完成签到 ,获得积分10
37秒前
Bonnie发布了新的文献求助10
39秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966223
求助须知:如何正确求助?哪些是违规求助? 3511662
关于积分的说明 11159065
捐赠科研通 3246265
什么是DOI,文献DOI怎么找? 1793321
邀请新用户注册赠送积分活动 874331
科研通“疑难数据库(出版商)”最低求助积分说明 804343