On Maximising the Vertex Coverage for ${\text{Top}}-k$ t-Bicliques in Bipartite Graphs

完全二部图 二部图 顶点(图论) 组合数学 计算机科学 枚举 指数函数 集合(抽象数据类型) 算法 离散数学 数学 图形 数学分析 程序设计语言
作者
Aman Abidi,Lu Chen,Chengfei Liu,Rui Zhou
标识
DOI:10.1109/icde53745.2022.00221
摘要

Enumeration of all maximal bicliques in bipartite graphs is a well-studied fundamental problem. However, a wide range of applications need less overlapping bicliques with specific size constraints instead of all the maximal bicliques. In this paper, we study a new biclique problem, called the top-k t-biclique coverage problem. A t-biclique is a biclique with a size constraint $t$ for one vertex set and the problem aims to find $k$ t-bicliques maximising the coverage on the other vertex set. The top-k t-biclique coverage problem has novel applications such as finding top-k courses while maximising student engagement. We prove that this problem is NP-hard. A straightforward way to address the problem first needs to enumerate and store all t-bicliques and then greedily select $k$ promising t-bicliques, leading an approximate guarantee on the coverage. However, it takes exponential space, which is impractical. We then apply a fast approximation scheme to solve this problem, which shaves the exponential space consumption by progressively updating top-k results during the t-biclique enumeration. Observing that the fast approximation algorithm takes too much time on updating the results due to the coverage is computed from scratch for each update, an online index is devised to address the drawback. Due the hardness of the problem, even the fast approximation algorithm cannot scale to large dataset. To devise a scalable solution, we then propose a heuristic algorithm running in polynomial time. Thanks for four carefully designed heuristic rules, the heuristic algorithm can find large coverage top-k t-bicliques extremely fast for large datasets. Apart from that, the heuristic result with large coverage can effectively prune unpromising enumerations in the fast greedy algorithm, which improves the efficiency of the fast approximation algorithm without compromising the approximation ratio. Extensive experiments are conducted on real datasets to justify the effectiveness and efficiency of the proposed algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LWL发布了新的文献求助10
刚刚
刚得力发布了新的文献求助10
刚刚
彭于晏应助孙琪琪采纳,获得10
刚刚
1秒前
小象发布了新的文献求助10
1秒前
开心易真完成签到 ,获得积分10
2秒前
hbhbj应助hkh采纳,获得10
3秒前
hbhbj应助hkh采纳,获得10
3秒前
hbhbj应助hkh采纳,获得10
3秒前
3秒前
7秒前
7秒前
大大彬完成签到 ,获得积分10
8秒前
han发布了新的文献求助10
8秒前
9秒前
Stride应助桃子牛肉酱采纳,获得10
9秒前
乐乐应助平硕采纳,获得10
10秒前
zzz完成签到 ,获得积分10
10秒前
刚得力完成签到,获得积分10
10秒前
chu完成签到,获得积分10
12秒前
精明觅荷发布了新的文献求助10
14秒前
mufulee完成签到,获得积分10
15秒前
冇_完成签到 ,获得积分10
15秒前
luoshi完成签到,获得积分10
17秒前
lee完成签到,获得积分10
18秒前
19秒前
FashionBoy应助chu采纳,获得10
19秒前
19秒前
20秒前
大胖小子完成签到,获得积分10
20秒前
Albert完成签到,获得积分10
21秒前
科研通AI2S应助AR采纳,获得10
23秒前
24秒前
doa发布了新的文献求助10
24秒前
量子星尘发布了新的文献求助10
24秒前
程大学完成签到,获得积分10
24秒前
NanFeng发布了新的文献求助10
25秒前
25秒前
25秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Comprehensive Computational Chemistry 2023 800
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4911940
求助须知:如何正确求助?哪些是违规求助? 4187232
关于积分的说明 13003449
捐赠科研通 3955200
什么是DOI,文献DOI怎么找? 2168624
邀请新用户注册赠送积分活动 1187094
关于科研通互助平台的介绍 1094340