On Maximising the Vertex Coverage for ${\text{Top}}-k$ t-Bicliques in Bipartite Graphs

完全二部图 二部图 顶点(图论) 组合数学 计算机科学 枚举 指数函数 集合(抽象数据类型) 算法 离散数学 数学 图形 数学分析 程序设计语言
作者
Aman Abidi,Lu Chen,Chengfei Liu,Rui Zhou
标识
DOI:10.1109/icde53745.2022.00221
摘要

Enumeration of all maximal bicliques in bipartite graphs is a well-studied fundamental problem. However, a wide range of applications need less overlapping bicliques with specific size constraints instead of all the maximal bicliques. In this paper, we study a new biclique problem, called the top-k t-biclique coverage problem. A t-biclique is a biclique with a size constraint $t$ for one vertex set and the problem aims to find $k$ t-bicliques maximising the coverage on the other vertex set. The top-k t-biclique coverage problem has novel applications such as finding top-k courses while maximising student engagement. We prove that this problem is NP-hard. A straightforward way to address the problem first needs to enumerate and store all t-bicliques and then greedily select $k$ promising t-bicliques, leading an approximate guarantee on the coverage. However, it takes exponential space, which is impractical. We then apply a fast approximation scheme to solve this problem, which shaves the exponential space consumption by progressively updating top-k results during the t-biclique enumeration. Observing that the fast approximation algorithm takes too much time on updating the results due to the coverage is computed from scratch for each update, an online index is devised to address the drawback. Due the hardness of the problem, even the fast approximation algorithm cannot scale to large dataset. To devise a scalable solution, we then propose a heuristic algorithm running in polynomial time. Thanks for four carefully designed heuristic rules, the heuristic algorithm can find large coverage top-k t-bicliques extremely fast for large datasets. Apart from that, the heuristic result with large coverage can effectively prune unpromising enumerations in the fast greedy algorithm, which improves the efficiency of the fast approximation algorithm without compromising the approximation ratio. Extensive experiments are conducted on real datasets to justify the effectiveness and efficiency of the proposed algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助土豪的如萱采纳,获得10
刚刚
2秒前
零零发布了新的文献求助10
4秒前
科研通AI6应助阿达采纳,获得10
4秒前
harry发布了新的文献求助200
4秒前
miao完成签到 ,获得积分10
5秒前
丹D完成签到,获得积分10
5秒前
韩明轩发布了新的文献求助10
5秒前
6秒前
JamesPei应助louise采纳,获得10
6秒前
7秒前
7秒前
7秒前
7秒前
bei_zh完成签到,获得积分10
8秒前
俭朴听双完成签到,获得积分10
9秒前
潘潘发布了新的文献求助10
10秒前
浮游应助科研界地板砖采纳,获得10
10秒前
科研通AI6应助zl采纳,获得10
10秒前
快乐的寄容完成签到,获得积分10
12秒前
12秒前
bei_zh发布了新的文献求助30
13秒前
13秒前
阿达完成签到,获得积分20
13秒前
wanci应助砼砼采纳,获得10
14秒前
大个应助六六采纳,获得10
14秒前
15秒前
海绵baobao完成签到,获得积分10
16秒前
16秒前
17秒前
脑洞疼应助勤恳的雪卉采纳,获得10
18秒前
ding应助韩明轩采纳,获得10
19秒前
19秒前
刘培恒完成签到,获得积分10
19秒前
嘿嘿发布了新的文献求助10
20秒前
晨晓完成签到,获得积分10
20秒前
高高的依白完成签到 ,获得积分10
22秒前
Otorhino完成签到 ,获得积分10
22秒前
闲云野鹤完成签到,获得积分10
22秒前
成就煎蛋关注了科研通微信公众号
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5353776
求助须知:如何正确求助?哪些是违规求助? 4486351
关于积分的说明 13966218
捐赠科研通 4386702
什么是DOI,文献DOI怎么找? 2410022
邀请新用户注册赠送积分活动 1402355
关于科研通互助平台的介绍 1376132