Context-based local-global fusion network for 3D point cloud classification and segmentation

计算机科学 点云 分割 背景(考古学) 融合 人工智能 点(几何) 云计算 模式识别(心理学) 数据挖掘 数学 地理 语言学 哲学 几何学 考古 操作系统
作者
Junwei Wu,Mingjie Sun,Chenru Jiang,Jiejie Liu,Jeremy S. Smith,Quan Zhang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:251: 124023-124023
标识
DOI:10.1016/j.eswa.2024.124023
摘要

3D point clouds have gained much research attention because of their ability to represent the spatial information of real-world environments in a detailed manner. Despite recent progress in point cloud processing with deep neural networks, most of them either implement sophisticated local feature aggregation methods or imitate 2D convolution operations in the range of K nearest neighbors with limited local context information. These methods may struggle to distinguish between similar geometric shapes within the local region of K nearest neighbors, such as doors and walls. To address this issue, we propose a novel local–global fusion network that captures the diverse local geometric shapes with global structure information. The proposed local–global fusion network comprises two main modules. Firstly, we have developed an effective approach for local context learning using incremental dilated KNN (IDKNN) as the neighbor selecting mechanism to enlarge the receptive field and incorporate more reliable points for local geometric shape learning. Secondly, a three-direction region-wise spatial attention (TRSA) algorithm has been developed to explore the global contextual dependencies. For global context learning, we first split the entire 3D space into regions with equal numbers of points, and, then, intra-region context features are extracted to learn the inter-region relations from three orthogonal directions, taking global structural knowledge into account. By fusing the local context information and global contextual dependencies, we establish a Local-Global Fusion Network, end-to-end framework, called LGFNet. Extensive experimental results on several benchmark datasets clearly demonstrate our approach can achieve state-of-the-art (SOTA) performance on point cloud classification, part segmentation, and indoor semantic segmentation. In addition, TRSA and IKDNN can be easily used in a plug-and-play fashion with various existing SOTA networks to substantially improve their performance. Our code is available at https://github.com/jasonwjw/IDKNN
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
炎星语完成签到,获得积分10
1秒前
123完成签到,获得积分20
2秒前
3秒前
kirirto完成签到,获得积分10
4秒前
飘逸的吐司完成签到 ,获得积分10
5秒前
飞翔的小武66完成签到,获得积分10
5秒前
打打应助sun采纳,获得10
5秒前
2240920060完成签到,获得积分20
6秒前
研友_LOK59L完成签到,获得积分10
9秒前
Jasper应助小陆采纳,获得10
10秒前
李健应助712采纳,获得10
10秒前
田様应助缓慢采纳,获得10
11秒前
13秒前
15秒前
清脆大门完成签到,获得积分10
15秒前
OO圈圈完成签到,获得积分10
15秒前
蒲云海发布了新的文献求助10
16秒前
CipherSage应助wangxiaobin采纳,获得10
18秒前
hsx发布了新的文献求助10
20秒前
20秒前
不要再忘登陆密码了完成签到,获得积分10
22秒前
22秒前
27秒前
27秒前
28秒前
星辰大海应助乔沃维奇采纳,获得10
30秒前
hsx完成签到,获得积分10
30秒前
思辰。发布了新的文献求助10
30秒前
31秒前
顾矜应助刀锋采纳,获得10
38秒前
快乐的蓝发布了新的文献求助10
39秒前
迷人成协完成签到,获得积分10
40秒前
linliqing完成签到,获得积分10
40秒前
怕孤单的从灵完成签到 ,获得积分10
41秒前
43秒前
传奇3应助刘大大采纳,获得10
44秒前
44秒前
44秒前
霸气的亿先完成签到 ,获得积分10
45秒前
sindex完成签到,获得积分10
47秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950988
求助须知:如何正确求助?哪些是违规求助? 3496346
关于积分的说明 11081695
捐赠科研通 3226885
什么是DOI,文献DOI怎么找? 1784005
邀请新用户注册赠送积分活动 868114
科研通“疑难数据库(出版商)”最低求助积分说明 800993