Context-based local-global fusion network for 3D point cloud classification and segmentation

计算机科学 点云 分割 背景(考古学) 融合 人工智能 点(几何) 云计算 模式识别(心理学) 数据挖掘 数学 地理 语言学 哲学 几何学 考古 操作系统
作者
Junwei Wu,Mingjie Sun,Chenru Jiang,Jiejie Liu,Jeremy S. Smith,Quan Zhang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:251: 124023-124023
标识
DOI:10.1016/j.eswa.2024.124023
摘要

3D point clouds have gained much research attention because of their ability to represent the spatial information of real-world environments in a detailed manner. Despite recent progress in point cloud processing with deep neural networks, most of them either implement sophisticated local feature aggregation methods or imitate 2D convolution operations in the range of K nearest neighbors with limited local context information. These methods may struggle to distinguish between similar geometric shapes within the local region of K nearest neighbors, such as doors and walls. To address this issue, we propose a novel local–global fusion network that captures the diverse local geometric shapes with global structure information. The proposed local–global fusion network comprises two main modules. Firstly, we have developed an effective approach for local context learning using incremental dilated KNN (IDKNN) as the neighbor selecting mechanism to enlarge the receptive field and incorporate more reliable points for local geometric shape learning. Secondly, a three-direction region-wise spatial attention (TRSA) algorithm has been developed to explore the global contextual dependencies. For global context learning, we first split the entire 3D space into regions with equal numbers of points, and, then, intra-region context features are extracted to learn the inter-region relations from three orthogonal directions, taking global structural knowledge into account. By fusing the local context information and global contextual dependencies, we establish a Local-Global Fusion Network, end-to-end framework, called LGFNet. Extensive experimental results on several benchmark datasets clearly demonstrate our approach can achieve state-of-the-art (SOTA) performance on point cloud classification, part segmentation, and indoor semantic segmentation. In addition, TRSA and IKDNN can be easily used in a plug-and-play fashion with various existing SOTA networks to substantially improve their performance. Our code is available at https://github.com/jasonwjw/IDKNN
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
愤怒的紫完成签到,获得积分10
1秒前
1秒前
赘婿应助勤劳亦瑶采纳,获得10
2秒前
杨仔完成签到,获得积分20
2秒前
2秒前
paper快来发布了新的文献求助10
3秒前
11发布了新的文献求助10
3秒前
橙子fy16_完成签到,获得积分20
4秒前
4秒前
4秒前
baolong完成签到,获得积分10
5秒前
愤怒的紫发布了新的文献求助10
6秒前
叮咚完成签到,获得积分10
6秒前
cmq完成签到 ,获得积分10
7秒前
7秒前
catsfat发布了新的文献求助10
8秒前
Singularity应助11采纳,获得10
8秒前
9秒前
li1发布了新的文献求助10
10秒前
tomato完成签到,获得积分10
10秒前
优雅山柏完成签到,获得积分10
10秒前
10秒前
多发文章完成签到,获得积分10
11秒前
55完成签到,获得积分10
11秒前
月光取暖发布了新的文献求助30
16秒前
劳模发布了新的文献求助10
18秒前
江月年完成签到 ,获得积分10
18秒前
dingtc0609_发布了新的文献求助10
18秒前
汉堡包应助个性的饼干采纳,获得10
19秒前
19秒前
小鱼完成签到,获得积分10
19秒前
21秒前
21秒前
21秒前
行走完成签到,获得积分10
22秒前
英姑应助shawn采纳,获得10
23秒前
23秒前
24秒前
DU发布了新的文献求助10
24秒前
wwww完成签到,获得积分10
25秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124803
求助须知:如何正确求助?哪些是违规求助? 2775148
关于积分的说明 7725553
捐赠科研通 2430633
什么是DOI,文献DOI怎么找? 1291291
科研通“疑难数据库(出版商)”最低求助积分说明 622121
版权声明 600328