超细纤维
阴极
材料科学
电池(电)
电流(流体)
多边形网格
离子
集电器
聚合物
复合材料
电气工程
工程类
化学
计算机科学
物理
计算机图形学(图像)
有机化学
功率(物理)
量子力学
作者
Edi Mados,Inbar Atar,Yuval Gratz,Mai Israeli,Olga Kondrova,Victor Fourman,Dov Sherman,Diana Golodnitsky,Amit Sitt
标识
DOI:10.1016/j.jpowsour.2024.234397
摘要
In this study, we report the development of a free-standing fiber-based mesh cathode made of electrospun composite microfibers containing 80 wt% lithium iron phosphate (LFP), as well as conductive microfibers containing carbon nano-fillers acting as the current collector (CC). Neither the electrode nor the current collector undergoes post-fabrication treatment or calcination. Scanning electron microscopy confirmed that the meshes are constructed of well-shaped microfibers and exhibit a high porosity, enabling efficient electrolyte penetration and improved electron and ion-transport channels. Two cathode architectures of the LFP/polymer-based CC meshes were explored: bilayered and interlayered. Both architectures are characterized by a high surface-to-volume ratio. The interlayered structure showed superior electrochemical performance due to enhanced LFP-CC fiber-to-fiber contacts and reduced resistance. Comparative analysis with electrospun LFP on aluminum foil revealed comparable specific capacity but higher polarization in the electrospun LFP/CC meshes, attributed to increased internal resistance and limited fiber-to-fiber contacts. However, the electrospun interlayered LFP/CC mesh exhibited significantly higher gravimetric energy density (197 Wh/kg (LFP + CC) and 94 Wh/kg (LFP + Al), respectively), offering lightweight and higher-energy-density electrode materials, thus guiding the design of high-performance flexible lithium-ion batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI