亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The value of different machine learning radiomics based on DCE-MRI in predicting axillary lymph node status of breast cancer

无线电技术 乳腺癌 淋巴结 医学 乳房磁振造影 淋巴结转移 价值(数学) 腋窝淋巴结 放射科 人工智能 肿瘤科 癌症 计算机科学 机器学习 内科学 乳腺摄影术 转移
作者
Han Wang,Li Gong
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-4170088/v1
摘要

Abstract Purpose The objective of this research was to investigate the significance of different machine learning models based on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) combined with clinicopathologic and radiological analysis in predicting axillary lymph node metastasis (ALNM) of primary breast cancer (BC). Methods The clinical data of 605 patients with BC underwent preoperative DCE-MRI examination from The Cancer Imaging Archive (TCIA) publicly available dataset were retrospectively analyzed and casually seperated into training and test cohort at a ratio of 8:2. After dimensionality reduction and selection, a prediction model was established using machine learning algorithms. Clinicopathologic characteristics were analyzed using univariate and multivariate logistic regression to identify variables for constructing clinical models. Receiver operating characteristic (ROC) curves analysis was used to screen out the best radiomics and clinical models, and a combined model was established. Decision curve analysis (DCA) was used to assess the clinical significance of the combined model. Results The combined model exhibited superior diagnostic predictive capability in determining the presence or absence of ALNM. The training and test cohorts yielded area under the curve (AUC) values of 0.890 and 0.854, respectively.Additionally, a distinct combined model was developed to distinguish between the N1 group (1-3 ALNM) and the N2-3 group (≥4 ALNM), demonstrating promising efficacy with AUC values of 0.973 and 0.835 in the training and test groups, respectively. Furthermore, the integrated model discriminated between N0, N1, and N2-3, yielding a micro AUC of 0.861 and a macro AUC of 0.812. Conclusion The integration of radiomics and clinicopathologic characteristics demonstrated outstanding predictive capability for ALNM, potentially offering a non-invasive and effective approach for clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zeeki完成签到 ,获得积分10
16秒前
葱饼完成签到 ,获得积分10
26秒前
30秒前
35秒前
Sarah发布了新的文献求助30
36秒前
38秒前
ahachaoyang发布了新的文献求助10
44秒前
宋枝野完成签到 ,获得积分10
51秒前
51秒前
1分钟前
车访枫完成签到 ,获得积分10
1分钟前
Me发布了新的文献求助10
1分钟前
1分钟前
闵玧其发布了新的文献求助10
1分钟前
1分钟前
1分钟前
zho发布了新的文献求助10
1分钟前
John完成签到,获得积分10
1分钟前
Yon完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
chriswtr发布了新的文献求助10
2分钟前
zho发布了新的文献求助10
2分钟前
2分钟前
一个薯片发布了新的文献求助10
2分钟前
sisyphus_yy完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
5度转角应助闵玧其采纳,获得10
2分钟前
sisyphus_yy发布了新的文献求助10
2分钟前
2分钟前
香蕉觅云应助sisyphus_yy采纳,获得10
3分钟前
今后应助baekhyun采纳,获得10
3分钟前
3分钟前
3分钟前
zho发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
Product Class 33: N-Arylhydroxylamines 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3388430
求助须知:如何正确求助?哪些是违规求助? 3000764
关于积分的说明 8793621
捐赠科研通 2686885
什么是DOI,文献DOI怎么找? 1471892
科研通“疑难数据库(出版商)”最低求助积分说明 680665
邀请新用户注册赠送积分活动 673313