亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep learning-based ensemble forecast and predictability analysis of the Kuroshio intrusion into the South China Sea

可预测性 气候学 入侵 中国 地质学 海洋学 中国海 气象学 地理 统计 数学 地球化学 考古
作者
Junkai Qian,Qiang Wang,Peng Liang,Suqi Peng,Huizan Wang,Yanling Wu
出处
期刊:Journal of Physical Oceanography [American Meteorological Society]
标识
DOI:10.1175/jpo-d-23-0175.1
摘要

Abstract The Kuroshio intrusion (KI) into the South China Sea (SCS) significantly affects the environment, ecology, and climate change of the SCS. However, due to the nonlinearity of KI, its numerical prediction often requires large ensemble size to measure prediction uncertainty. The huge computational costs of large numbers of members and high-resolution numerical models pose significant challenges for KI prediction. We, therefore, construct a Kuroshio ensemble deep learning prediction system (KurNet) through taking different values of parameters to predict KI paths because the deep learning models have high prediction skills and low computational cost. The KurNet containing 64 ensemble members can not only output ensemble mean forecast result of the Kuroshio path, but also estimate probability density functions for the path types. The KurNet illustrates a high predictive ability for the KI with the mean classification accuracy of 71.9% and root mean square error of 0.913 on the testing set, which is superior to the single control prediction by ∼1.0–2.9%, although the control prediction model is selected as one of the ensemble members with the best predictive ability on the validation set. Furthermore, the predictability analysis of 10 KI events indicates that when the lead time is 3 days, the most important areas are in the east of Luzon Island due to the upstream Kuroshio transport. As the lead time increases, the most important area is in the Luzon Strait due to the eddy activity. Observing system simulation experiments reveal that the KI forecast skill can be enhanced by ∼12–18%, when uncertainties of the input data in these important regions are removed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Vivian薇薇安完成签到,获得积分10
2秒前
乐乐应助Vivian薇薇安采纳,获得10
6秒前
9秒前
MchemG完成签到,获得积分0
12秒前
VDC完成签到,获得积分0
12秒前
Akim应助科研通管家采纳,获得10
22秒前
23秒前
29秒前
VDC发布了新的文献求助30
30秒前
33秒前
Developing_human完成签到,获得积分10
39秒前
苹果新蕾完成签到,获得积分10
45秒前
moiaoh发布了新的文献求助20
46秒前
55秒前
Yolo完成签到,获得积分10
58秒前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
自然的小宋完成签到,获得积分20
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
邺城寒水完成签到 ,获得积分10
2分钟前
CodeCraft应助oshunne采纳,获得10
2分钟前
灵巧的代芙完成签到 ,获得积分10
2分钟前
2分钟前
研友_ZGRqKn发布了新的文献求助10
3分钟前
研友_ZGRqKn完成签到,获得积分10
3分钟前
wanwan524完成签到 ,获得积分10
3分钟前
CodeCraft应助phd采纳,获得10
3分钟前
充电宝应助phd采纳,获得10
3分钟前
3分钟前
sailingluwl完成签到,获得积分10
3分钟前
阿泽发布了新的文献求助10
3分钟前
大个应助phd采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644764
求助须知:如何正确求助?哪些是违规求助? 4765419
关于积分的说明 15025593
捐赠科研通 4803089
什么是DOI,文献DOI怎么找? 2567965
邀请新用户注册赠送积分活动 1525479
关于科研通互助平台的介绍 1485004