Deep learning-based ensemble forecast and predictability analysis of the Kuroshio intrusion into the South China Sea

可预测性 气候学 入侵 中国 地质学 海洋学 中国海 气象学 地理 统计 数学 地球化学 考古
作者
Junkai Qian,Qiang Wang,Peng Liang,Suqi Peng,Huizan Wang,Yanling Wu
出处
期刊:Journal of Physical Oceanography [American Meteorological Society]
标识
DOI:10.1175/jpo-d-23-0175.1
摘要

Abstract The Kuroshio intrusion (KI) into the South China Sea (SCS) significantly affects the environment, ecology, and climate change of the SCS. However, due to the nonlinearity of KI, its numerical prediction often requires large ensemble size to measure prediction uncertainty. The huge computational costs of large numbers of members and high-resolution numerical models pose significant challenges for KI prediction. We, therefore, construct a Kuroshio ensemble deep learning prediction system (KurNet) through taking different values of parameters to predict KI paths because the deep learning models have high prediction skills and low computational cost. The KurNet containing 64 ensemble members can not only output ensemble mean forecast result of the Kuroshio path, but also estimate probability density functions for the path types. The KurNet illustrates a high predictive ability for the KI with the mean classification accuracy of 71.9% and root mean square error of 0.913 on the testing set, which is superior to the single control prediction by ∼1.0–2.9%, although the control prediction model is selected as one of the ensemble members with the best predictive ability on the validation set. Furthermore, the predictability analysis of 10 KI events indicates that when the lead time is 3 days, the most important areas are in the east of Luzon Island due to the upstream Kuroshio transport. As the lead time increases, the most important area is in the Luzon Strait due to the eddy activity. Observing system simulation experiments reveal that the KI forecast skill can be enhanced by ∼12–18%, when uncertainties of the input data in these important regions are removed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
紫葡萄发布了新的文献求助10
1秒前
siner完成签到,获得积分20
2秒前
shao完成签到,获得积分10
2秒前
秾晓豆完成签到,获得积分10
3秒前
Ryuichi发布了新的文献求助10
3秒前
今后应助huang采纳,获得10
3秒前
hurry完成签到,获得积分10
5秒前
123完成签到,获得积分10
5秒前
siner发布了新的文献求助10
6秒前
6秒前
笙默0329完成签到 ,获得积分10
7秒前
7秒前
hh嘉靖无敌完成签到,获得积分10
7秒前
科研通AI2S应助hcx采纳,获得10
8秒前
doc完成签到,获得积分20
8秒前
丰富广缘完成签到 ,获得积分10
8秒前
8秒前
希望天下0贩的0应助123123采纳,获得10
8秒前
Owen应助淡淡菠萝采纳,获得10
8秒前
8秒前
shao发布了新的文献求助10
10秒前
10秒前
10秒前
刘xiansheng发布了新的文献求助10
10秒前
LT完成签到,获得积分10
10秒前
传奇3应助siner采纳,获得10
10秒前
10秒前
11秒前
11秒前
xudonghui发布了新的文献求助10
11秒前
willen完成签到,获得积分10
12秒前
科研星发布了新的文献求助30
12秒前
帅的人完成签到,获得积分20
13秒前
Sheep_ST发布了新的文献求助30
14秒前
顾矜应助yu采纳,获得10
14秒前
14秒前
XXDD小吴发布了新的文献求助10
14秒前
doc发布了新的文献求助10
14秒前
uni完成签到,获得积分10
15秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135818
求助须知:如何正确求助?哪些是违规求助? 2786651
关于积分的说明 7778773
捐赠科研通 2442821
什么是DOI,文献DOI怎么找? 1298711
科研通“疑难数据库(出版商)”最低求助积分说明 625212
版权声明 600866