Convolutional Neural Networks Facilitate Process Understanding of Megacity Ozone Temporal Variability

特大城市 卷积神经网络 臭氧 过程(计算) 环境科学 计算机科学 气象学 人工智能 地理 生态学 生物 操作系统
作者
Zelin Mai,Huizhong Shen,Aoxing Zhang,Zhe Sun,Lianming Zheng,Jianfeng Guo,Chanfang Liu,Yilin Chen,Chen Wang,Jianhuai Ye,Lei Zhu,Tzung‐May Fu,Xin Yang,Shu Tao
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:58 (35): 15691-15701 被引量:5
标识
DOI:10.1021/acs.est.3c07907
摘要

Ozone pollution is profoundly modulated by meteorological features such as temperature, air pressure, wind, and humidity. While many studies have developed empirical models to elucidate the effects of meteorology on ozone variability, they predominantly focus on local weather conditions, overlooking the influences from high-altitude and broader regional meteorological patterns. Here, we employ convolutional neural networks (CNNs), a technique typically applied to image recognition, to investigate the influence of three-dimensional spatial variations in meteorological fields on the daily, seasonal, and interannual dynamics of ozone in Shenzhen, a major coastal urban center in China. Our optimized CNNs model, covering a 13° × 13° spatial domain, effectively explains over 70% of daily ozone variability, outperforming alternative empirical approaches by 7 to 62%. Model interpretations reveal the crucial roles of 2-m temperature and humidity as primary drivers, contributing 16% and 15% to daily ozone fluctuations, respectively. Regional wind fields account for up to 40% of ozone changes during the episodes. CNNs successfully replicate observed ozone temporal patterns, attributing -5-6 μg·m
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
Jiatu_Li发布了新的文献求助10
4秒前
英吉利25发布了新的文献求助10
8秒前
10秒前
11秒前
CodeCraft应助zzydada采纳,获得20
12秒前
yangL完成签到,获得积分10
12秒前
13秒前
充电宝应助科研通管家采纳,获得10
13秒前
华仔应助科研通管家采纳,获得10
13秒前
SciGPT应助科研通管家采纳,获得10
13秒前
共享精神应助科研通管家采纳,获得10
13秒前
顾矜应助科研通管家采纳,获得10
13秒前
小二郎应助科研通管家采纳,获得10
14秒前
852应助科研通管家采纳,获得10
14秒前
传奇3应助科研通管家采纳,获得10
14秒前
小蘑菇应助科研通管家采纳,获得10
14秒前
乐乐应助科研通管家采纳,获得10
14秒前
14秒前
Hello应助科研通管家采纳,获得10
14秒前
彭于晏应助科研通管家采纳,获得10
14秒前
汉堡包应助科研通管家采纳,获得10
14秒前
爆米花应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
14秒前
FashionBoy应助科研通管家采纳,获得10
14秒前
李爱国应助科研通管家采纳,获得50
14秒前
哈哈哈哈发布了新的文献求助10
15秒前
二十又澪完成签到,获得积分10
15秒前
16秒前
yangL发布了新的文献求助10
16秒前
千跃完成签到,获得积分10
18秒前
阿甲发布了新的文献求助10
18秒前
19秒前
隐形曼青应助Jiatu_Li采纳,获得10
19秒前
钟鸿盛Domi发布了新的文献求助10
21秒前
eros发布了新的文献求助10
22秒前
NexusExplorer应助泽锦臻采纳,获得10
25秒前
koh完成签到,获得积分10
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3991903
求助须知:如何正确求助?哪些是违规求助? 3533023
关于积分的说明 11260405
捐赠科研通 3272329
什么是DOI,文献DOI怎么找? 1805693
邀请新用户注册赠送积分活动 882626
科研通“疑难数据库(出版商)”最低求助积分说明 809425