Convolutional Neural Networks Facilitate Process Understanding of Megacity Ozone Temporal Variability

特大城市 卷积神经网络 臭氧 过程(计算) 环境科学 计算机科学 气象学 人工智能 地理 生态学 生物 操作系统
作者
Zelin Mai,Huizhong Shen,Aoxing Zhang,Zhe Sun,Lianming Zheng,Jianfeng Guo,Chanfang Liu,Yilin Chen,Chen Wang,Jianhuai Ye,Lei Zhu,Tzung‐May Fu,Xin Yang,Shu Tao
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:58 (35): 15691-15701 被引量:13
标识
DOI:10.1021/acs.est.3c07907
摘要

Ozone pollution is profoundly modulated by meteorological features such as temperature, air pressure, wind, and humidity. While many studies have developed empirical models to elucidate the effects of meteorology on ozone variability, they predominantly focus on local weather conditions, overlooking the influences from high-altitude and broader regional meteorological patterns. Here, we employ convolutional neural networks (CNNs), a technique typically applied to image recognition, to investigate the influence of three-dimensional spatial variations in meteorological fields on the daily, seasonal, and interannual dynamics of ozone in Shenzhen, a major coastal urban center in China. Our optimized CNNs model, covering a 13° × 13° spatial domain, effectively explains over 70% of daily ozone variability, outperforming alternative empirical approaches by 7 to 62%. Model interpretations reveal the crucial roles of 2-m temperature and humidity as primary drivers, contributing 16% and 15% to daily ozone fluctuations, respectively. Regional wind fields account for up to 40% of ozone changes during the episodes. CNNs successfully replicate observed ozone temporal patterns, attributing -5-6 μg·m-3 of interannual ozone variability to weather anomalies. Our interpretable CNNs framework enables quantitative attribution of historical ozone fluctuations to nonlinear meteorological effects across spatiotemporal scales, offering vital process-based insights for managing megacity air quality amidst changing climate regimes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
单纯的小土豆完成签到 ,获得积分10
7秒前
wBw完成签到,获得积分0
17秒前
Young完成签到 ,获得积分10
18秒前
数乱了梨花完成签到 ,获得积分0
19秒前
阳光溪流完成签到 ,获得积分10
27秒前
32秒前
shacodow完成签到,获得积分10
35秒前
ll完成签到,获得积分10
44秒前
瞿人雄完成签到,获得积分10
46秒前
没心没肺完成签到,获得积分10
48秒前
1002SHIB完成签到,获得积分10
49秒前
nihaolaojiu完成签到,获得积分10
49秒前
sheetung完成签到,获得积分10
49秒前
彭于晏应助科研通管家采纳,获得10
50秒前
wlscj应助科研通管家采纳,获得20
51秒前
麦田麦兜完成签到,获得积分10
51秒前
司连喜完成签到,获得积分10
52秒前
波西米亚完成签到,获得积分10
1分钟前
顺利毕业完成签到 ,获得积分10
1分钟前
S.S.N完成签到 ,获得积分10
1分钟前
orixero应助乐观海云采纳,获得30
1分钟前
小欣子完成签到 ,获得积分10
1分钟前
w婷完成签到 ,获得积分10
1分钟前
专注的觅云完成签到 ,获得积分10
1分钟前
1分钟前
健忘的晓小完成签到 ,获得积分10
1分钟前
庄怀逸完成签到 ,获得积分10
1分钟前
乐观海云发布了新的文献求助30
1分钟前
花花完成签到 ,获得积分10
1分钟前
果酱发布了新的文献求助10
1分钟前
lkc完成签到,获得积分10
1分钟前
取法乎上完成签到 ,获得积分10
1分钟前
943034197完成签到,获得积分10
1分钟前
yy完成签到 ,获得积分0
1分钟前
orixero应助果酱采纳,获得10
1分钟前
沉沉完成签到 ,获得积分0
1分钟前
一剑白完成签到 ,获得积分10
1分钟前
迷路的映安完成签到 ,获得积分10
1分钟前
baobeikk完成签到,获得积分10
1分钟前
拉长的芷烟完成签到 ,获得积分10
2分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertebrate Palaeontology, 5th Edition 530
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5347381
求助须知:如何正确求助?哪些是违规求助? 4481679
关于积分的说明 13947989
捐赠科研通 4379900
什么是DOI,文献DOI怎么找? 2406682
邀请新用户注册赠送积分活动 1399221
关于科研通互助平台的介绍 1372293