Deep learning-based pore network generation: Numerical insights into pore geometry effects on microstructural fluid flow behaviors of unconventional resources

流量(数学) 地质学 流体力学 机械 多孔性 几何学 材料科学 石油工程 岩土工程 物理 数学
作者
Bei-Er Guo,Nan Xiao,Dmitriy A. Martyushev,Zhi Zhao
出处
期刊:Energy [Elsevier BV]
卷期号:294: 130990-130990 被引量:6
标识
DOI:10.1016/j.energy.2024.130990
摘要

Pore-scale transport behaviors and mechanisms of rock reservoirs are still not well understood to increase unconventional resource production. This work mainly focuses on proposing a deep learning-based method to rapidly construct optimal pore network with different pore types, and deeply analyze its effects on pore-scale transport behaviors and mechanisms. The pore-scale variables reservoir evaluation indexes are defined to quantitatively evaluate pore geometry effects on the properties and production of rock reservoirs. The two-phase displacement simulations in pore network are conducted to study microstructural flow behaviors and transport mechanisms. Results suggest that the deep learning-based digital labeling algorithm (DL-DLA) has excellent abilities to rapidly construct pore network with errors less than 5%, compared with the classical algorithms. Square pores and circle throats are suggested as the optimal pore network assembly, considering the fluid phase drainage efficiency and production rate. The microstructural transport mechanisms are concluded as the pore-throat drainage, pore-filling, fluid phase mixing and fluid phase equilibrium processes. The novel theoretical relation between fluid phase drainage and microscopic production indexes provides effective tools to estimate rock reservoir production with errors all less than 10%, which are helpful for the technique developments to increase the production of unconventional resources in rock reservoirs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
αβ发布了新的文献求助10
刚刚
刚刚
ghx发布了新的文献求助10
刚刚
1秒前
Miraitowa发布了新的文献求助30
3秒前
3秒前
柳叶洋完成签到,获得积分10
4秒前
maoyixuan完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
淡然的煜城关注了科研通微信公众号
4秒前
风清扬发布了新的文献求助10
4秒前
7秒前
7秒前
ljb完成签到,获得积分10
8秒前
深情安青应助QiangZi采纳,获得10
8秒前
9秒前
10秒前
11秒前
ljb发布了新的文献求助10
11秒前
12秒前
尘心发布了新的文献求助10
12秒前
12秒前
mmmmmMM发布了新的文献求助10
14秒前
白代朝发布了新的文献求助10
15秒前
Peterd发布了新的文献求助10
15秒前
Azyyyy发布了新的文献求助10
15秒前
16秒前
18秒前
20秒前
量子星尘发布了新的文献求助10
21秒前
sun发布了新的文献求助10
21秒前
科研通AI2S应助zxy采纳,获得10
21秒前
22秒前
Jasper应助鸡狗不如采纳,获得10
23秒前
24秒前
24秒前
25秒前
hero_ljw发布了新的文献求助20
25秒前
QiangZi发布了新的文献求助10
25秒前
qqqqgc发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Research Handbook on Corporate Governance in China 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4908385
求助须知:如何正确求助?哪些是违规求助? 4185042
关于积分的说明 12996504
捐赠科研通 3951722
什么是DOI,文献DOI怎么找? 2167149
邀请新用户注册赠送积分活动 1185586
关于科研通互助平台的介绍 1092179