Deep learning-based pore network generation: Numerical insights into pore geometry effects on microstructural fluid flow behaviors of unconventional resources

流量(数学) 地质学 流体力学 机械 多孔性 几何学 材料科学 石油工程 岩土工程 物理 数学
作者
Bei-Er Guo,Nan Xiao,Dmitriy A. Martyushev,Zhi Zhao
出处
期刊:Energy [Elsevier]
卷期号:294: 130990-130990 被引量:6
标识
DOI:10.1016/j.energy.2024.130990
摘要

Pore-scale transport behaviors and mechanisms of rock reservoirs are still not well understood to increase unconventional resource production. This work mainly focuses on proposing a deep learning-based method to rapidly construct optimal pore network with different pore types, and deeply analyze its effects on pore-scale transport behaviors and mechanisms. The pore-scale variables reservoir evaluation indexes are defined to quantitatively evaluate pore geometry effects on the properties and production of rock reservoirs. The two-phase displacement simulations in pore network are conducted to study microstructural flow behaviors and transport mechanisms. Results suggest that the deep learning-based digital labeling algorithm (DL-DLA) has excellent abilities to rapidly construct pore network with errors less than 5%, compared with the classical algorithms. Square pores and circle throats are suggested as the optimal pore network assembly, considering the fluid phase drainage efficiency and production rate. The microstructural transport mechanisms are concluded as the pore-throat drainage, pore-filling, fluid phase mixing and fluid phase equilibrium processes. The novel theoretical relation between fluid phase drainage and microscopic production indexes provides effective tools to estimate rock reservoir production with errors all less than 10%, which are helpful for the technique developments to increase the production of unconventional resources in rock reservoirs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
weiwei完成签到,获得积分10
刚刚
大个应助苗条的山晴采纳,获得10
1秒前
努力发一区完成签到 ,获得积分0
1秒前
蒋时晏应助恶恶么v采纳,获得30
1秒前
2秒前
2秒前
gennp完成签到,获得积分10
2秒前
gg完成签到,获得积分10
2秒前
1111发布了新的文献求助10
2秒前
情怀应助wjh采纳,获得10
3秒前
3秒前
Hey关闭了Hey文献求助
3秒前
学渣向下完成签到,获得积分10
3秒前
咚咚咚发布了新的文献求助10
3秒前
4秒前
willen完成签到,获得积分10
4秒前
4秒前
奇怪的柒完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
文静的枫叶完成签到,获得积分10
6秒前
科目三应助神麒小雪采纳,获得10
6秒前
zzznznnn发布了新的文献求助10
7秒前
pbf发布了新的文献求助20
7秒前
科研通AI5应助有风采纳,获得10
8秒前
Lin完成签到,获得积分10
8秒前
科研通AI5应助肉松小贝采纳,获得10
9秒前
粉色完成签到,获得积分10
9秒前
Ll发布了新的文献求助10
9秒前
9秒前
愉快彩虹发布了新的文献求助10
10秒前
CTL完成签到,获得积分10
10秒前
10秒前
共享精神应助加减乘除采纳,获得10
10秒前
10秒前
恬恬完成签到,获得积分10
10秒前
11秒前
22发布了新的文献求助10
11秒前
aacc956发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759