摘要
Chapter 1 Introduction of the Metastable-Phase Materials Qi Shao, Qi Shao Soochow University, College of Chemistry, Chemical Engineering and Materials Science, Suzhou, 215123 Jiangsu, ChinaSearch for more papers by this authorMingwang Shao, Mingwang Shao Soochow University, Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Suzhou, 215123 Jiangsu, ChinaSearch for more papers by this author Qi Shao, Qi Shao Soochow University, College of Chemistry, Chemical Engineering and Materials Science, Suzhou, 215123 Jiangsu, ChinaSearch for more papers by this authorMingwang Shao, Mingwang Shao Soochow University, Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Suzhou, 215123 Jiangsu, ChinaSearch for more papers by this author Book Editor(s):Qi Shao, Qi Shao Soochow University, Suzhou, ChinaSearch for more papers by this authorZhenhui Kang, Zhenhui Kang Soochow University, Suzhou, ChinaSearch for more papers by this authorMingwang Shao, Mingwang Shao Soochow University, Suzhou, ChinaSearch for more papers by this author First published: 05 April 2024 https://doi.org/10.1002/9783527839834.ch1 AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary This chapter first gives a brief introduction of metastable-phase material, which is the matter located in a state that corresponds to a local minimum in energy separated by a barrier from the state corresponding to the global minimum. This chapter then summarizes the categories of metastable-phase materials based on connecting mode, coordination number, chemical bond, and polymorphs. The influences of temperature, pressure, and spin on stabilizing metastable-phase are also summarized. The applications of metastable-phase materials are introduced. In the end, the criterion for stable-phase and metastable-phase materials is represented. References Alert , R. , Tierno , P. , and Casademunt , J. ( 2016 ). Formation of metastable phases by spinodal decomposition . Nature Communications 7 : 13067 . 10.1038/ncomms13067 CASPubMedWeb of Science®Google Scholar Sasaki , S. , Caldes , M.T. , Guillot-Deudon , C. et al. ( 2021 ). Design of metastable oxychalcogenide phases by topochemical (de)intercalation of sulfur in La 2 O 2 S 2 . Nature Communications 12 ( 1 ): 3605 . 10.1038/s41467-021-23677-w CASPubMedGoogle Scholar Kocevski , V. , Valdez , J.A. , Derby , B.K. et al. ( 2023 ). Predicting and accessing metastable phases . Materials Advances 4 ( 4 ): 1101 – 1112 . 10.1039/D2MA00995A CASGoogle Scholar Wang , C.X. and Yang , G.W. ( 2005 ). Thermodynamics of metastable phase nucleation at the nanoscale . Materials Science & Engineering R – Reports 49 ( 6 ): 157 – 202 . 10.1016/j.mser.2005.06.002 Google Scholar Bechhoefer , J. , Löwen , H. , and Tuckerman , L.S. ( 1991 ). Dynamical mechanism for the formation of metastable phases . Physical Review Letters 67 ( 10 ): 1266 – 1269 . 10.1103/PhysRevLett.67.1266 CASPubMedGoogle Scholar Di Maio , D. and Hunt , C. ( 2009 ). Time-lapse photography of the β-Sn/α-Sn allotropic transformation . Journal of Materials Science: Materials in Electronics 20 ( 4 ): 386 – 391 . 10.1007/s10854-008-9739-5 CASGoogle Scholar Li , H.B. , Zanella , M. , Genovese , A. et al. ( 2011 ). Sequential cation exchange in nanocrystals: preservation of crystal phase and formation of metastable phases . Nano Letters 11 ( 11 ): 4964 – 4970 . 10.1021/nl202927a CASPubMedWeb of Science®Google Scholar Ayyub , P. , Multani , M. , Barma , M. et al. ( 1988 ). Size-induced structural phase transitions and hyperfine properties of microcrystalline Fe 2 O 3 . Journal of Physics C – Solid State Physics 21 ( 11 ): 2229 – 2245 . 10.1088/0022-3719/21/11/014 CASWeb of Science®Google Scholar Urgel , J.I. , Ecija , D. , Lyu , G.Q. et al. ( 2016 ). Quasicrystallinity expressed in two-dimensional coordination networks . Nature Chemistry 8 ( 7 ): 657 – 662 . 10.1038/nchem.2507 CASPubMedWeb of Science®Google Scholar Yoshida , T. , Itoh , K. , Tamura , R. , and Takeuchi , S. ( 2000 ). Plastic deformation and hardness in Mg-Zn-(Y, Ho) icosahedral quasicrystals . Materials Science and Engineering A – Structural Materials Properties 294 : 786 – 789 . 10.1016/S0921-5093(00)01063-7 Google Scholar Shi , L. , Zhang , Y.F. , Dong , B.Q. et al. ( 2013 ). Amorphous photonic crystals with only short-range order . Advanced Materials 25 ( 37 ): 5314 – 5320 . 10.1002/adma.201301909 CASPubMedWeb of Science®Google Scholar Patil , U. , Hong , S.H. , and Suryanarayana , C. ( 2005 ). An unusual phase transformation during mechanical alloying of an Fe-based bulk metallic glass composition . Journal of Alloys and Compounds 389 ( 1-2 ): 121 – 126 . 10.1016/j.jallcom.2004.08.020 CASGoogle Scholar Suryanarayana , C. ( 2019 ). Mechanical alloying: a novel technique to synthesize advanced materials . Research 2019 : 17 . 10.34133/2019/4219812 Google Scholar Chandran , M. and Sondhi , S.K. ( 2011 ). First-principle calculation of stacking fault energies in Ni and Ni-Co alloy . Journal of Applied Physics 109 ( 10 ): 103525 . 10.1063/1.3585786 Google Scholar Hossain , M.D. , Mayanovic , R.A. , Dey , S. et al. ( 2018 ). Room-temperature ferromagnetism in Ni (II)-chromia based core–shell nanoparticles: experiment and first principles calculations . Physical Chemistry Chemical Physics 20 ( 15 ): 10396 – 10406 . 10.1039/C7CP08597D CASPubMedGoogle Scholar Davar , F. , Fereshteh , Z. , and Salavati-Niasari , M. ( 2009 ). Nanoparticles Ni and NiO: synthesis, characterization and magnetic properties . Journal of Alloys and Compounds 476 ( 1-2 ): 797 – 801 . 10.1016/j.jallcom.2008.09.121 CASWeb of Science®Google Scholar Fang , X.S. , Zhai , T.Y. , Gautam , U.K. et al. ( 2011 ). ZnS nanostructures: from synthesis to applications . Progress in Materials Science 56 ( 2 ): 175 – 287 . 10.1016/j.pmatsci.2010.10.001 CASWeb of Science®Google Scholar Matsunami , H. and Kimoto , T. ( 1997 ). Step-controlled epitaxial growth of SiC: High quality homoepitaxy . Materials Science & Engineering R – Reports 20 ( 3 ): 125 – 166 . 10.1016/S0927-796X(97)00005-3 Web of Science®Google Scholar Kaplan , R. , Erjavec , B. , Dražić , G. et al. ( 2016 ). Simple synthesis of anatase/rutile/brookite TiO 2 nanocomposite with superior mineralization potential for photocatalytic degradation of water pollutants . Applied Catalysis B – Environmental 181 : 465 – 474 . 10.1016/j.apcatb.2015.08.027 CASWeb of Science®Google Scholar Gao , C.M. , Wei , T. , Zhang , Y.Y. et al. ( 2019 ). A photoresponsive rutile TiO 2 heterojunction with enhanced electron–hole separation for high-performance hydrogen evolution . Advanced Materials 31 ( 8 ): 1806596 . 10.1002/adma.201806596 Web of Science®Google Scholar Wang , L.L. , Zhu , C.W. , Xu , M.Q. et al. ( 2021 ). Boosting activity and stability of metal single-atom catalysts via regulation of coordination number and local composition . Journal of the American Chemical Society 143 ( 45 ): 18854 – 18858 . 10.1021/jacs.1c09498 CASPubMedGoogle Scholar He , Y. , Li , Y.J. , Chen , C.F. , and Yu , H.B. ( 2017 ). Diffusion coefficient of hydrogen interstitial atom in α-Fe, γ-Fe and ϵ-Fe crystals by first-principle calculations . International Journal of Hydrogen Energy 42 ( 44 ): 27438 – 27445 . 10.1016/j.ijhydene.2017.08.212 CASGoogle Scholar Haq , A.U. , Askari , S. , McLister , A. et al. ( 2019 ). Size-dependent stability of ultra-small α-/β-phase tin nanocrystals synthesized by microplasma . Nature Communications 10 ( 1 ): 817 . 10.1038/s41467-019-08661-9 CASPubMedGoogle Scholar Ooi , N. , Rairkar , A. , and Adams , J.B. ( 2006 ). Density functional study of graphite bulk and surface properties . Carbon 44 ( 2 ): 231 – 242 . 10.1016/j.carbon.2005.07.036 CASGoogle Scholar Erdemir , A. and Martin , J.M. ( 2018 ). Superior wear resistance of diamond and DLC coatings . Current Opinion in Solid State & Materials Science 22 ( 6 ): 243 – 254 . 10.1016/j.cossms.2018.11.003 CASGoogle Scholar Kim , K. , Arora , A. , Lewis , R.M. III et al. ( 2018 ). Origins of low-symmetry phases in asymmetric diblock copolymer melts . Proceedings of the National Academy of Sciences of the United States of America 115 ( 5 ): 847 – 854 . 10.1073/pnas.1717850115 CASPubMedWeb of Science®Google Scholar Kupka , M. ( 2006 ). High temperature strengthening of the FeAl intermetallic phase-based alloy . Intermetallics 14 ( 2 ): 149 – 155 . 10.1016/j.intermet.2005.04.013 CASGoogle Scholar Baker , I. and Munroe , P.R. ( 1997 ). Mechanical properties of FeAl . International Materials Reviews 42 ( 5 ): 181 – 205 . 10.1179/imr.1997.42.5.181 CASWeb of Science®Google Scholar Liu , Q. , Liao , Z.R. , and Axinte , D. ( 2020 ). Temperature effect on the material removal mechanism of soft-brittle crystals at nano/micron scale . International Journal of Machine Tools & Manufacture 159 : 103620 . 10.1016/j.ijmachtools.2020.103620 Google Scholar Chang , C. , Wu , M.H. , He , D.S. et al. ( 2018 ). 3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals . Science 360 ( 6390 ): 778 – 783 . 10.1126/science.aaq1479 CASPubMedWeb of Science®Google Scholar Ushkov , A.V. and Grushin , V.V. ( 2011 ). Rational catalysis design on the basis of mechanistic understanding: highly efficient Pd-catalyzed cyanation of aryl bromides with NaCN in recyclable solvents . Journal of the American Chemical Society 133 ( 28 ): 10999 – 11005 . 10.1021/ja2042035 CASPubMedGoogle Scholar Mare , E.R. , O'Neill , H.S.C. , Berry , A.J. et al. ( 2021 ). Coordination change of Ge 4+ and Ga 3+ in silicate melt with pressure . Geochimica Et Cosmochimica Acta 303 : 184 – 204 . 10.1016/j.gca.2021.03.008 CASGoogle Scholar Vershinina , T.N. , Bobrikov , I.A. , Sumnikov , S.V. et al. ( 2021 ). Crystal structure and phase composition evolution during heat treatment of Fe-45Ga alloy . Intermetallics 131 : 107110 . 10.1016/j.intermet.2021.107110 CASGoogle Scholar Soderholm , L. , Zhang , K. , Hinks , D.G. et al. ( 1987 ). Incorporation of Pr in YBa 2 Cu 3 O 7 -δ: electronic effects on superconductivity . Nature 328 ( 6131 ): 604 – 605 . 10.1038/328604a0 CASGoogle Scholar Mary , T.A. , Evans , J.S.O. , Vogt , T. , and Sleight , A.W. ( 1996 ). Negative thermal expansion from 0.3 to 1050 Kelvin in ZrW 2 O 8 . Science 272 ( 5258 ): 90 – 92 . 10.1126/science.272.5258.90 CASWeb of Science®Google Scholar Assi , H. , Mouchaham , G. , Steunou , N. et al. ( 2017 ). Titanium coordination compounds: from discrete metal complexes to metal-organic frameworks . Chemical Society Reviews 46 ( 11 ): 3431 – 3452 . 10.1039/C7CS00001D CASPubMedGoogle Scholar Lv , D.F. , Chen , J.Y. , Chen , Y.W. et al. ( 2019 ). Moisture stability of ethane-selective Ni (II), Fe (III), Zr (IV)-based metal-organic frameworks . AIChE Journal 65 ( 8 ): e16616 . 10.1002/aic.16616 Web of Science®Google Scholar Karasev , M.O. , Karaseva , I.N. , and Pushkin , D.V. ( 2021 ). MC n (M= Ga, In, Tl) coordination polyhedra in crystal structures . Russian Journal of Inorganic Chemistry 66 : 1669 – 1681 . 10.1134/S0036023621110115 CASGoogle Scholar Xie , Y. , Ma , Y.M. , Cui , T. et al. ( 2008 ). Origin of bcc to fcc phase transition under pressure in alkali metals . New Journal of Physics 10 ( 6 ): 063022 . 10.1088/1367-2630/10/6/063022 Google Scholar Matsui , M. and Anderson , O.L. ( 1997 ). The case for a body-centered cubic phase (α′) for iron at inner core conditions . Physics of the Earth and Planetary Interiors 103 ( 1-2 ): 55 – 62 . 10.1016/S0031-9201(97)00020-4 CASGoogle Scholar Therrien , F. , Jones , E.B. , and Stevanović , V. ( 2021 ). Metastable materials discovery in the age of large-scale computation . Applied Physics Reviews 8 ( 3 ): 031310 . 10.1063/5.0049453 CASGoogle Scholar Zhang , Z. , Zandkarimi , B. , and Alexandrova , A.N. ( 2020 ). Ensembles of metastable states govern heterogeneous catalysis on dynamic interfaces . Accounts of Chemical Research 53 ( 2 ): 447 – 458 . 10.1021/acs.accounts.9b00531 CASPubMedWeb of Science®Google Scholar Zhang , Y.Z. , Zhou , W. , Tang , Y. et al. ( 2022 ). Unravelling unsaturated edge S in amorphous NiS x for boosting photocatalytic H 2 evolution of metastable phase CdS confined inside hydrophilic beads . Applied Catalysis B – Environmental 305 : 121055 . 10.1016/j.apcatb.2021.121055 CASWeb of Science®Google Scholar Wen , W.D. , Yan , P. , Sun , W.P. et al. ( 2023 ). Metastable phase Cu with optimized local electronic state for efficient electrocatalytic production of ammonia from nitrate . Advanced Functional Materials 33 ( 6 ): 2212236 . 10.1002/adfm.202212236 CASWeb of Science®Google Scholar Caskey , C.M. , Richards , R.M. , Ginley , D.S. , and Zakutayev , A. ( 2014 ). Thin film synthesis and properties of copper nitride, a metastable semiconductor . Materials Horizons 1 ( 4 ): 424 – 430 . 10.1039/C4MH00049H CASGoogle Scholar Balasubramanian , B. , Zhao , X. , Valloppilly , S.R. et al. ( 2018 ). Magnetism of new metastable cobalt-nitride compounds . Nanoscale 10 ( 27 ): 13011 – 13021 . 10.1039/C8NR02105H CASPubMedGoogle Scholar Zhou , L.J. , Xu , J.G. , Allix , M. , and Kuang , X.J. ( 2020 ). Development of melilite-type oxide ion conductors . Chemical Record 20 ( 10 ): 1117 – 1128 . 10.1002/tcr.202000069 CASPubMedWeb of Science®Google Scholar Budden , M. , Gebert , T. , Buzzi , M. et al. ( 2007 ). Evidence for metastable photo-induced superconductivity in K 3 C 60 . Nature Physics 17 ( 5 ): 611 – 618 . 10.1038/s41567-020-01148-1 Google Scholar Ikeda , T. , Collins , L.A. , Ravi , V.A. et al. ( 2007 ). Self-assembled nanometer lamellae of thermoelectric PbTe and Sb 2 Te 3 with epitaxy-like interfaces . Chemistry of Materials 19 ( 4 ): 763 – 767 . 10.1021/cm062121p CASWeb of Science®Google Scholar Cao , H.Q. , Qiu , X.Q. , Luo , B. et al. ( 2004 ). Synthesis and room-temperature ultraviolet photoluminescence properties of zirconia nanowires . Advanced Functional Materials 14 ( 3 ): 243 – 246 . 10.1002/adfm.200305033 CASWeb of Science®Google Scholar Righettoni , M. , Tricoli , A. , and Pratsinis , S.E. ( 2010 ). Thermally stable, silica-doped ϵ-WO 3 for sensing of acetone in the human breath . Chemistry of Materials 22 ( 10 ): 3152 – 3157 . 10.1021/cm1001576 CASGoogle Scholar Clark , C.H.D. ( 1939 ). Interrelation of dissociation energy, internuclear distance and bond order for carbon-carbon linkages . Nature 143 ( 3628 ): 800 – 801 . 10.1038/143800b0 CASGoogle Scholar Huggins , M.L. ( 1953 ). Atomic radii. IV. Dependence of interatomic distance on bond energy . Journal of the American Chemical Society 75 : 4126 – 4133 . 10.1021/ja01113a002 CASWeb of Science®Google Scholar Metastable Materials: Synthesis, Characterization and Catalytic Applications ReferencesRelatedInformation