A fast general thermal simulation model based on Multi-Branch Physics-Informed deep operator neural network

解算器 人工神经网络 深度学习 热的 领域(数学) 物理 人工智能 计算机科学 机器学习 数学 气象学 程序设计语言 纯数学
作者
Zibo Lu,Yuanye Zhou,Yanbo Zhang,X Hu,Qiao Zhao,Xuyang Hu
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (3)
标识
DOI:10.1063/5.0194245
摘要

Thermal simulation plays a crucial role in various fields, often involving complex partial differential equation (PDE) simulations for thermal optimization. To tackle this challenge, we have harnessed neural networks for thermal prediction, specifically employing deep neural networks as a universal solver for PDEs. This innovative approach has garnered significant attention in the scientific community. While Physics-Informed Neural Networks (PINNs) have been introduced for thermal prediction using deep neural networks, existing methods primarily focus on offering thermal simulations for predefined relevant parameters, such as heat sources, loads, boundaries, and initial conditions. However, any adjustments to these parameters typically require retraining or transfer learning, resulting in considerable additional work. To overcome this limitation, we integrated PINN methods with the DeepONet model, creating a novel model called PI-DeepONet for thermal simulation. This model takes both relevant parameters and coordinate points as simultaneous input functions, presenting a fresh computational perspective for thermal simulation. Based on the PaddlePaddle deep learning framework, our research demonstrates that after sufficient training, this model can reliably and rapidly predict parameter solutions. Importantly, it significantly surpasses traditional numerical solvers in terms of speed by several orders of magnitude, without requiring additional training. This groundbreaking research framework holds vast application potential and promises substantial advancements in the field of thermal simulation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cheng发布了新的文献求助10
刚刚
hfdfffcc完成签到 ,获得积分10
刚刚
刚刚
1秒前
研友_nV2pkn发布了新的文献求助10
2秒前
2秒前
乐乐应助开心便当采纳,获得10
4秒前
4秒前
shanshanshan完成签到,获得积分10
5秒前
wanci应助yjr采纳,获得10
5秒前
科目三应助默默的大白采纳,获得10
6秒前
cheng完成签到,获得积分10
6秒前
yaofully完成签到,获得积分10
7秒前
DC-CIK军团发布了新的文献求助10
7秒前
科研通AI2S应助英勇冥王星采纳,获得10
7秒前
8秒前
荔枝多酚发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
吃紫薯的鱼完成签到,获得积分10
10秒前
10秒前
11秒前
追寻的山晴应助qq采纳,获得20
11秒前
12秒前
12秒前
CC2333发布了新的文献求助10
13秒前
烂漫寒云发布了新的文献求助10
13秒前
14秒前
娟娟发布了新的文献求助10
14秒前
15秒前
栾小鱼发布了新的文献求助10
15秒前
15秒前
12发布了新的文献求助20
15秒前
AaronW应助绅度采纳,获得10
16秒前
16秒前
16秒前
17秒前
Yang完成签到,获得积分10
17秒前
KK发布了新的文献求助10
18秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160609
求助须知:如何正确求助?哪些是违规求助? 2811828
关于积分的说明 7893452
捐赠科研通 2470647
什么是DOI,文献DOI怎么找? 1315718
科研通“疑难数据库(出版商)”最低求助积分说明 630929
版权声明 602052