清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Training-Free Transformer Architecture Search With Zero-Cost Proxy Guided Evolution

变压器 计算机科学 人工智能 建筑 机器学习 模式识别(心理学) 数据挖掘 工程类 电压 电气工程 艺术 视觉艺术
作者
Qinqin Zhou,Kekai Sheng,Xiawu Zheng,Ke Li,Yonghong Tian,Jie Chen,Rongrong Ji
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-17 被引量:2
标识
DOI:10.1109/tpami.2024.3378781
摘要

Transformers have shown remarkable performance, however, their architecture design is a time-consuming process that demands expertise and trial-and-error. Thus, it is worthwhile to investigate efficient methods for automatically searching high-performance Transformers via Transformer Architecture Search (TAS). In order to improve the search efficiency, training-free proxy based methods have been widely adopted in Neural Architecture Search (NAS). Whereas, these proxies have been found to be inadequate in generalizing well to Transformer search spaces, as confirmed by several studies and our own experiments. This paper presents an effective scheme for TAS called TR ansformer A rchitecture search with Z er O -cost p R oxy guided evolution (T-Razor) that achieves exceptional efficiency. Firstly, through theoretical analysis, we discover that the synaptic diversity of multi-head self-attention (MSA) and the saliency of multi-layer perceptron (MLP) are correlated with the performance of corresponding Transformers. The properties of synaptic diversity and synaptic saliency motivate us to introduce the ranks of synaptic diversity and saliency that denoted as DSS++ for evaluating and ranking Transformers. DSS++ incorporates correlation information among sampled Transformers to provide unified scores for both synaptic diversity and synaptic saliency. We then propose a block-wise evolution search guided by DSS++ to find optimal Transformers. DSS++ determines the positions for mutation and crossover, enhancing the exploration ability. Experimental results demonstrate that our T-Razor performs competitively against the state-of-the-art manually or automatically designed Transformer architectures across four popular Transformer search spaces. Significantly, T-Razor improves the searching efficiency across different Transformer search spaces, e.g., reducing required GPU days from more than 24 to less than 0.4 and outperforming existing zero-cost approaches. We also apply T-Razor to the BERT search space and find that the searched Transformers achieve competitive GLUE results on several Neural Language Processing (NLP) datasets. This work provides insights into training-free TAS, revealing the usefulness of evaluating Transformers based on the properties of their different blocks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
39秒前
鳗鱼起眸发布了新的文献求助10
44秒前
1分钟前
chnz3636发布了新的文献求助10
1分钟前
2分钟前
theseus完成签到,获得积分10
2分钟前
2分钟前
共享精神应助帮帮我好吗采纳,获得10
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
4分钟前
4分钟前
5分钟前
5分钟前
5分钟前
冬去春来完成签到 ,获得积分10
5分钟前
Jasper应助枯藤老柳树采纳,获得30
6分钟前
酷波er应助帮帮我好吗采纳,获得10
6分钟前
6分钟前
6分钟前
科研通AI2S应助白华苍松采纳,获得10
6分钟前
7分钟前
7分钟前
7分钟前
7分钟前
zhouleiwang发布了新的文献求助10
7分钟前
poki完成签到 ,获得积分10
7分钟前
8分钟前
OCDer发布了新的文献求助10
8分钟前
清爽玉米完成签到,获得积分10
8分钟前
FashionBoy应助科研通管家采纳,获得10
9分钟前
皮老师发布了新的文献求助200
10分钟前
合不着完成签到 ,获得积分10
10分钟前
10分钟前
10分钟前
风起枫落完成签到 ,获得积分10
11分钟前
11分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137021
求助须知:如何正确求助?哪些是违规求助? 2787992
关于积分的说明 7784214
捐赠科研通 2444073
什么是DOI,文献DOI怎么找? 1299719
科研通“疑难数据库(出版商)”最低求助积分说明 625497
版权声明 600997