Training-Free Transformer Architecture Search With Zero-Cost Proxy Guided Evolution

变压器 计算机科学 人工智能 建筑 机器学习 模式识别(心理学) 数据挖掘 工程类 电压 电气工程 艺术 视觉艺术
作者
Qinqin Zhou,Kekai Sheng,Xiawu Zheng,Ke Li,Yonghong Tian,Jie Chen,Rongrong Ji
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:: 1-17 被引量:2
标识
DOI:10.1109/tpami.2024.3378781
摘要

Transformers have shown remarkable performance, however, their architecture design is a time-consuming process that demands expertise and trial-and-error. Thus, it is worthwhile to investigate efficient methods for automatically searching high-performance Transformers via Transformer Architecture Search (TAS). In order to improve the search efficiency, training-free proxy based methods have been widely adopted in Neural Architecture Search (NAS). Whereas, these proxies have been found to be inadequate in generalizing well to Transformer search spaces, as confirmed by several studies and our own experiments. This paper presents an effective scheme for TAS called TR ansformer A rchitecture search with Z er O -cost p R oxy guided evolution (T-Razor) that achieves exceptional efficiency. Firstly, through theoretical analysis, we discover that the synaptic diversity of multi-head self-attention (MSA) and the saliency of multi-layer perceptron (MLP) are correlated with the performance of corresponding Transformers. The properties of synaptic diversity and synaptic saliency motivate us to introduce the ranks of synaptic diversity and saliency that denoted as DSS++ for evaluating and ranking Transformers. DSS++ incorporates correlation information among sampled Transformers to provide unified scores for both synaptic diversity and synaptic saliency. We then propose a block-wise evolution search guided by DSS++ to find optimal Transformers. DSS++ determines the positions for mutation and crossover, enhancing the exploration ability. Experimental results demonstrate that our T-Razor performs competitively against the state-of-the-art manually or automatically designed Transformer architectures across four popular Transformer search spaces. Significantly, T-Razor improves the searching efficiency across different Transformer search spaces, e.g., reducing required GPU days from more than 24 to less than 0.4 and outperforming existing zero-cost approaches. We also apply T-Razor to the BERT search space and find that the searched Transformers achieve competitive GLUE results on several Neural Language Processing (NLP) datasets. This work provides insights into training-free TAS, revealing the usefulness of evaluating Transformers based on the properties of their different blocks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怡然的怀莲完成签到 ,获得积分10
1秒前
1秒前
飞天817完成签到,获得积分10
2秒前
LUK_完成签到,获得积分10
2秒前
2秒前
脑洞疼应助平常的雁凡采纳,获得10
3秒前
小鱼医生完成签到 ,获得积分10
3秒前
3秒前
研友_ZAxKMn发布了新的文献求助10
4秒前
高大的曼荷完成签到,获得积分10
5秒前
ll完成签到,获得积分10
5秒前
6秒前
zena92完成签到,获得积分10
6秒前
领导范儿应助笑一笑采纳,获得10
6秒前
7秒前
归尘发布了新的文献求助10
7秒前
思源应助执着的秋柳采纳,获得30
8秒前
Sherwin完成签到,获得积分10
9秒前
充电宝应助Zj采纳,获得10
9秒前
Endeavor完成签到,获得积分10
10秒前
马康辉发布了新的文献求助30
11秒前
阳光下的星星应助modesty采纳,获得10
11秒前
13秒前
13秒前
14秒前
modesty完成签到,获得积分10
16秒前
17秒前
文艺向松发布了新的文献求助10
17秒前
18秒前
HH完成签到 ,获得积分10
18秒前
科研通AI2S应助11采纳,获得10
18秒前
雄i完成签到,获得积分10
20秒前
dingzj0828发布了新的文献求助10
21秒前
22秒前
量子星尘发布了新的文献求助10
23秒前
23秒前
星渊完成签到,获得积分10
25秒前
logitech发布了新的文献求助30
25秒前
27秒前
马康辉完成签到,获得积分10
30秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958225
求助须知:如何正确求助?哪些是违规求助? 3504388
关于积分的说明 11118283
捐赠科研通 3235682
什么是DOI,文献DOI怎么找? 1788411
邀请新用户注册赠送积分活动 871211
科研通“疑难数据库(出版商)”最低求助积分说明 802565