Transfer‐Learning‐Enabled 3D Reconfigurable Broadband Solar Metamaterial Absorbers Design

宽带 超材料 光学 材料科学 光电子学 物理
作者
Sheng Wang,Qiongxiong Ma,Ruihuan Wu,Wen Feng Ding,Jianping Guo
出处
期刊:Optics Communications [Elsevier]
卷期号:: 130644-130644
标识
DOI:10.1016/j.optcom.2024.130644
摘要

Research on metamaterials shows excellent potential in the field of solar energy harvesting. In recent years, the design of broadband solar metamaterial absorbers (SMAs) has attracted significant interest with the wide application of deep learning methods. This paper proposes a deep neural network (DNN) to realize forward prediction and inverse design of reconfigurable 3D SMAs. In the inverse design, a polarization-insensitive broadband SMA with an absorption bandwidth of 2.7 μm and an average absorption rate of 97.6% with an adjustable bandwidth range of 369 nm is successfully designed. The design of SMAs with different structures is also realized by a transfer learning method to improve the training speed and performance further. Using the transfer learning approach, the training speed of the neural network target model can be accelerated, and its training performance can be improved on small datasets by utilizing the trained neural network source model. Meanwhile, using the trained inverse design target model, a polarization-insensitive broadband SMA was designed with an absorption bandwidth of 2.7 μm, an average absorption of 97.9%, and an adjustable bandwidth range of 141 nm. Finally, we verified the solar energy harvesting capability of the designed broadband SMAs under real-world conditions using air mass (AM) 1.5, and they were calculated to be capable of harvesting the vast majority of the energy. The method is instructive in the design process of SMAs and can be effectively used to explore multifunctional complex nanophotonic devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
April完成签到 ,获得积分10
刚刚
关七应助喝口鲫鱼汤采纳,获得30
1秒前
王菠萝完成签到,获得积分10
1秒前
勤劳尔容发布了新的文献求助10
1秒前
香妃完成签到,获得积分10
2秒前
282387287完成签到,获得积分10
2秒前
当下猫发布了新的文献求助10
2秒前
Lucas应助多情最是春庭雪采纳,获得10
4秒前
shan发布了新的文献求助10
4秒前
搜集达人应助废柴采纳,获得10
5秒前
cosmos发布了新的文献求助50
6秒前
6秒前
ccch完成签到,获得积分20
8秒前
10秒前
9xixixixixixixi完成签到,获得积分10
11秒前
蒋东晓完成签到 ,获得积分10
11秒前
lzj001983完成签到,获得积分10
12秒前
小泥娃发布了新的文献求助10
12秒前
12秒前
Hobby完成签到,获得积分10
13秒前
勤劳尔容完成签到,获得积分10
13秒前
WWXWWX发布了新的文献求助10
14秒前
15秒前
15秒前
王金金发布了新的文献求助10
15秒前
16秒前
17秒前
在水一方应助张英俊采纳,获得10
18秒前
18秒前
Jasper应助zjq采纳,获得10
20秒前
李爱国应助exosome采纳,获得10
20秒前
20秒前
卡牌大师发布了新的文献求助10
20秒前
11完成签到,获得积分10
20秒前
unfa完成签到,获得积分20
21秒前
fwt发布了新的文献求助10
21秒前
21秒前
废柴发布了新的文献求助10
22秒前
肉肉完成签到,获得积分10
23秒前
Marco发布了新的文献求助10
23秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143538
求助须知:如何正确求助?哪些是违规求助? 2794891
关于积分的说明 7812770
捐赠科研通 2451061
什么是DOI,文献DOI怎么找? 1304203
科研通“疑难数据库(出版商)”最低求助积分说明 627207
版权声明 601386