Transfer‐Learning‐Enabled 3D Reconfigurable Broadband Solar Metamaterial Absorbers Design

宽带 超材料 光学 材料科学 光电子学 物理
作者
Sheng Wang,Qiongxiong Ma,Ruihuan Wu,Wen Feng Ding,Jianping Guo
出处
期刊:Optics Communications [Elsevier]
卷期号:: 130644-130644
标识
DOI:10.1016/j.optcom.2024.130644
摘要

Research on metamaterials shows excellent potential in the field of solar energy harvesting. In recent years, the design of broadband solar metamaterial absorbers (SMAs) has attracted significant interest with the wide application of deep learning methods. This paper proposes a deep neural network (DNN) to realize forward prediction and inverse design of reconfigurable 3D SMAs. In the inverse design, a polarization-insensitive broadband SMA with an absorption bandwidth of 2.7 μm and an average absorption rate of 97.6% with an adjustable bandwidth range of 369 nm is successfully designed. The design of SMAs with different structures is also realized by a transfer learning method to improve the training speed and performance further. Using the transfer learning approach, the training speed of the neural network target model can be accelerated, and its training performance can be improved on small datasets by utilizing the trained neural network source model. Meanwhile, using the trained inverse design target model, a polarization-insensitive broadband SMA was designed with an absorption bandwidth of 2.7 μm, an average absorption of 97.9%, and an adjustable bandwidth range of 141 nm. Finally, we verified the solar energy harvesting capability of the designed broadband SMAs under real-world conditions using air mass (AM) 1.5, and they were calculated to be capable of harvesting the vast majority of the energy. The method is instructive in the design process of SMAs and can be effectively used to explore multifunctional complex nanophotonic devices.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一个奎发布了新的文献求助10
刚刚
1秒前
奋斗的雪曼完成签到,获得积分10
1秒前
1秒前
活力安南发布了新的文献求助50
2秒前
狗狗碎碎完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
4秒前
自然的霸完成签到,获得积分10
4秒前
4秒前
浮游应助科研通管家采纳,获得10
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
所所应助科研通管家采纳,获得10
5秒前
cyb发布了新的文献求助10
5秒前
共享精神应助科研通管家采纳,获得50
5秒前
5秒前
Wind应助科研通管家采纳,获得10
5秒前
hans应助科研通管家采纳,获得10
5秒前
shhoing应助科研通管家采纳,获得10
5秒前
Ava应助科研通管家采纳,获得10
5秒前
Ming完成签到,获得积分10
5秒前
顾矜应助科研通管家采纳,获得10
5秒前
老小孩完成签到 ,获得积分10
5秒前
关关过应助科研通管家采纳,获得10
5秒前
汉堡包应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
wuzhenwei应助科研通管家采纳,获得10
6秒前
大模型应助科研通管家采纳,获得10
6秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
Owen应助科研通管家采纳,获得10
6秒前
情怀应助科研通管家采纳,获得10
6秒前
小香菇完成签到,获得积分20
6秒前
浮游应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545750
求助须知:如何正确求助?哪些是违规求助? 4631794
关于积分的说明 14622444
捐赠科研通 4573504
什么是DOI,文献DOI怎么找? 2507566
邀请新用户注册赠送积分活动 1484223
关于科研通互助平台的介绍 1455544