Transfer‐Learning‐Enabled 3D Reconfigurable Broadband Solar Metamaterial Absorbers Design

宽带 超材料 光学 材料科学 光电子学 物理
作者
Sheng Wang,Qiongxiong Ma,Ruihuan Wu,Wen Feng Ding,Jianping Guo
出处
期刊:Optics Communications [Elsevier]
卷期号:: 130644-130644
标识
DOI:10.1016/j.optcom.2024.130644
摘要

Research on metamaterials shows excellent potential in the field of solar energy harvesting. In recent years, the design of broadband solar metamaterial absorbers (SMAs) has attracted significant interest with the wide application of deep learning methods. This paper proposes a deep neural network (DNN) to realize forward prediction and inverse design of reconfigurable 3D SMAs. In the inverse design, a polarization-insensitive broadband SMA with an absorption bandwidth of 2.7 μm and an average absorption rate of 97.6% with an adjustable bandwidth range of 369 nm is successfully designed. The design of SMAs with different structures is also realized by a transfer learning method to improve the training speed and performance further. Using the transfer learning approach, the training speed of the neural network target model can be accelerated, and its training performance can be improved on small datasets by utilizing the trained neural network source model. Meanwhile, using the trained inverse design target model, a polarization-insensitive broadband SMA was designed with an absorption bandwidth of 2.7 μm, an average absorption of 97.9%, and an adjustable bandwidth range of 141 nm. Finally, we verified the solar energy harvesting capability of the designed broadband SMAs under real-world conditions using air mass (AM) 1.5, and they were calculated to be capable of harvesting the vast majority of the energy. The method is instructive in the design process of SMAs and can be effectively used to explore multifunctional complex nanophotonic devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
路过地球发布了新的文献求助10
刚刚
言庭兰玉完成签到,获得积分10
刚刚
刚刚
1秒前
1秒前
AI_Medical完成签到,获得积分10
2秒前
guoguo关注了科研通微信公众号
3秒前
Blue_Eyes发布了新的文献求助10
3秒前
Bazinga发布了新的文献求助10
3秒前
黄bb完成签到,获得积分10
3秒前
李爱国应助Hiccupsssss采纳,获得10
3秒前
3秒前
哆啦十七应助导师求放过采纳,获得10
4秒前
Howes91完成签到,获得积分10
4秒前
4秒前
小二郎应助忆仙姿采纳,获得10
4秒前
香蕉觅云应助贾千兰采纳,获得10
4秒前
4秒前
ysq发布了新的文献求助10
4秒前
4秒前
望天发布了新的文献求助10
4秒前
宁人发布了新的文献求助10
5秒前
落叶的季节完成签到,获得积分10
5秒前
6秒前
bkagyin应助妙aaa采纳,获得10
6秒前
Zhang发布了新的文献求助10
6秒前
6秒前
6秒前
li发布了新的文献求助10
6秒前
6秒前
6秒前
orixero应助自由思枫采纳,获得10
6秒前
7秒前
蓝色的云发布了新的文献求助30
7秒前
朴实的绮南完成签到,获得积分10
7秒前
领导范儿应助zhang-leo采纳,获得10
7秒前
斯文败类应助无限的兔子采纳,获得10
7秒前
薛小飞飞完成签到 ,获得积分10
7秒前
英俊的铭应助与卿123采纳,获得80
7秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5330356
求助须知:如何正确求助?哪些是违规求助? 4469805
关于积分的说明 13910955
捐赠科研通 4363153
什么是DOI,文献DOI怎么找? 2396686
邀请新用户注册赠送积分活动 1390108
关于科研通互助平台的介绍 1360884