Transfer‐Learning‐Enabled 3D Reconfigurable Broadband Solar Metamaterial Absorbers Design

宽带 超材料 光学 材料科学 光电子学 物理
作者
Sheng Wang,Qiongxiong Ma,Ruihuan Wu,Wen Feng Ding,Jianping Guo
出处
期刊:Optics Communications [Elsevier]
卷期号:: 130644-130644
标识
DOI:10.1016/j.optcom.2024.130644
摘要

Research on metamaterials shows excellent potential in the field of solar energy harvesting. In recent years, the design of broadband solar metamaterial absorbers (SMAs) has attracted significant interest with the wide application of deep learning methods. This paper proposes a deep neural network (DNN) to realize forward prediction and inverse design of reconfigurable 3D SMAs. In the inverse design, a polarization-insensitive broadband SMA with an absorption bandwidth of 2.7 μm and an average absorption rate of 97.6% with an adjustable bandwidth range of 369 nm is successfully designed. The design of SMAs with different structures is also realized by a transfer learning method to improve the training speed and performance further. Using the transfer learning approach, the training speed of the neural network target model can be accelerated, and its training performance can be improved on small datasets by utilizing the trained neural network source model. Meanwhile, using the trained inverse design target model, a polarization-insensitive broadband SMA was designed with an absorption bandwidth of 2.7 μm, an average absorption of 97.9%, and an adjustable bandwidth range of 141 nm. Finally, we verified the solar energy harvesting capability of the designed broadband SMAs under real-world conditions using air mass (AM) 1.5, and they were calculated to be capable of harvesting the vast majority of the energy. The method is instructive in the design process of SMAs and can be effectively used to explore multifunctional complex nanophotonic devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈基米德举报朱孟研求助涉嫌违规
刚刚
1秒前
1秒前
2秒前
newnew发布了新的文献求助10
2秒前
sunidea发布了新的文献求助10
2秒前
佳宝(不可以喝但能吃完成签到,获得积分10
3秒前
3秒前
4秒前
所所应助是小银鱼采纳,获得10
4秒前
kakafan完成签到,获得积分10
4秒前
Ww发布了新的文献求助10
5秒前
科研通AI6应助xiaofeizhu采纳,获得10
6秒前
JamesPei应助moonnight采纳,获得10
6秒前
6秒前
研友_LjMy08发布了新的文献求助10
7秒前
7秒前
stmnkl发布了新的文献求助10
7秒前
8秒前
Qy05完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
kakafan发布了新的文献求助10
8秒前
洋葱王子发布了新的文献求助10
8秒前
9秒前
英姑应助喏晨采纳,获得10
9秒前
小青椒应助忐忑的小兔子采纳,获得30
10秒前
我的昵称完成签到,获得积分10
11秒前
11秒前
晨曦应助风中的觅海采纳,获得10
11秒前
搜集达人应助桃桃采纳,获得10
11秒前
11秒前
11秒前
所所应助陈花蕾采纳,获得10
12秒前
奔跑的胖纸关注了科研通微信公众号
12秒前
13秒前
14秒前
温婉的春天完成签到,获得积分10
14秒前
负责青亦完成签到 ,获得积分10
14秒前
我的昵称发布了新的文献求助10
14秒前
Leoling完成签到,获得积分20
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430640
求助须知:如何正确求助?哪些是违规求助? 4543688
关于积分的说明 14188578
捐赠科研通 4462030
什么是DOI,文献DOI怎么找? 2446377
邀请新用户注册赠送积分活动 1437761
关于科研通互助平台的介绍 1414490