Transfer‐Learning‐Enabled 3D Reconfigurable Broadband Solar Metamaterial Absorbers Design

宽带 超材料 光学 材料科学 光电子学 物理
作者
Sheng Wang,Qiongxiong Ma,Ruihuan Wu,Wen Feng Ding,Jianping Guo
出处
期刊:Optics Communications [Elsevier]
卷期号:: 130644-130644
标识
DOI:10.1016/j.optcom.2024.130644
摘要

Research on metamaterials shows excellent potential in the field of solar energy harvesting. In recent years, the design of broadband solar metamaterial absorbers (SMAs) has attracted significant interest with the wide application of deep learning methods. This paper proposes a deep neural network (DNN) to realize forward prediction and inverse design of reconfigurable 3D SMAs. In the inverse design, a polarization-insensitive broadband SMA with an absorption bandwidth of 2.7 μm and an average absorption rate of 97.6% with an adjustable bandwidth range of 369 nm is successfully designed. The design of SMAs with different structures is also realized by a transfer learning method to improve the training speed and performance further. Using the transfer learning approach, the training speed of the neural network target model can be accelerated, and its training performance can be improved on small datasets by utilizing the trained neural network source model. Meanwhile, using the trained inverse design target model, a polarization-insensitive broadband SMA was designed with an absorption bandwidth of 2.7 μm, an average absorption of 97.9%, and an adjustable bandwidth range of 141 nm. Finally, we verified the solar energy harvesting capability of the designed broadband SMAs under real-world conditions using air mass (AM) 1.5, and they were calculated to be capable of harvesting the vast majority of the energy. The method is instructive in the design process of SMAs and can be effectively used to explore multifunctional complex nanophotonic devices.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
4秒前
星辰大海应助Wqian采纳,获得10
7秒前
7秒前
11秒前
19秒前
20秒前
科目三应助朴素的松采纳,获得10
21秒前
Jodie发布了新的文献求助10
24秒前
24秒前
Heinrich完成签到,获得积分10
25秒前
Lucas应助inter采纳,获得10
29秒前
无极微光应助科研通管家采纳,获得20
32秒前
Orange应助科研通管家采纳,获得10
32秒前
Verity应助科研通管家采纳,获得10
32秒前
32秒前
丘比特应助科研通管家采纳,获得10
32秒前
32秒前
苏新天完成签到 ,获得积分10
32秒前
搜集达人应助科研通管家采纳,获得10
32秒前
Liangang应助科研通管家采纳,获得10
32秒前
32秒前
搜集达人应助科研通管家采纳,获得10
32秒前
huanger应助科研通管家采纳,获得10
32秒前
桐桐应助科研通管家采纳,获得10
33秒前
斯文败类应助科研通管家采纳,获得10
33秒前
小新应助科研通管家采纳,获得10
33秒前
香蕉觅云应助科研通管家采纳,获得10
33秒前
科研通AI6应助科研通管家采纳,获得10
33秒前
斯文败类应助科研通管家采纳,获得10
33秒前
一叶知秋应助科研通管家采纳,获得10
33秒前
33秒前
33秒前
35秒前
跳跃的翼完成签到,获得积分10
38秒前
健忘可愁完成签到,获得积分10
39秒前
跳跃的翼发布了新的文献求助10
40秒前
41秒前
无花果应助加百莉采纳,获得10
44秒前
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557705
求助须知:如何正确求助?哪些是违规求助? 4642797
关于积分的说明 14669110
捐赠科研通 4584209
什么是DOI,文献DOI怎么找? 2514668
邀请新用户注册赠送积分活动 1488870
关于科研通互助平台的介绍 1459550