Module defect detection and diagnosis for intelligent maintenance of solar photovoltaic plants: Techniques, systems and perspectives

光伏系统 系统工程 可靠性工程 工程类 计算机科学 电气工程
作者
Wuqin Tang,Qiang Yang,Zhijun Dai,Wenjun Yan
出处
期刊:Energy [Elsevier BV]
卷期号:: 131222-131222
标识
DOI:10.1016/j.energy.2024.131222
摘要

The energy production efficiency of photovoltaic (PV) systems can be degraded due to the complicated operating environment. Given the huge installed capacity of large-scale PV farms, intelligent operation and maintenance techniques and strategies are required to keep the healthy operation of the photovoltaic system. A complete inspection system, which is a key part of the intelligent operation and maintenance system, should focus on the following issues: defects types and mechanisms, defects detection methods, IoT techniques and UAV-based inspection methods. In this review, a comprehensive study is proposed to review and conclude the research advance and the prospects. In particular, given the complicated operation condition, we first review the environmental factor causing the defects and the corresponding possible degradation for PV modules. Then, the defect type and detection techniques are discussed and analyzed. Due to the strong ability for feature extraction, deep learning is a useful tool for defect detection of PV modules. Considering the location and geographical characteristics, conventional manual inspection is inefficient and even infeasible in practice. IoT techniques and UAV-based systems are utilized more and more popular, which are also discussed and summarized in this review. Due to the limit of the I/V sensors in the PV plants, this work reviewed the UAV-based system in detail, which has high efficiency for inspection and is widely used in industry, especially for visible and IR image-based systems. With technological advances in image sensors, the UAV-based system mounted with an Electroluminescence (EL) camera also presents huge potential. Finally, the conclusion and future direction for intelligent inspection and defect detection are provided.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助scl采纳,获得10
刚刚
开朗醉波完成签到,获得积分10
刚刚
1秒前
典雅夏之完成签到,获得积分10
1秒前
lemon完成签到,获得积分10
2秒前
开心完成签到,获得积分10
3秒前
Weirdo完成签到,获得积分10
3秒前
海德堡完成签到,获得积分10
5秒前
科研通AI2S应助典雅夏之采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
YXIAN完成签到,获得积分10
7秒前
harmy完成签到,获得积分10
7秒前
闪闪青雪应助淡定小蜜蜂采纳,获得30
7秒前
JamesPei应助科研通管家采纳,获得10
8秒前
orixero应助科研通管家采纳,获得10
8秒前
Akim应助科研通管家采纳,获得10
8秒前
闫132发布了新的文献求助10
8秒前
NB完成签到,获得积分10
9秒前
田二亩完成签到,获得积分10
10秒前
凄凉山谷的风完成签到,获得积分10
10秒前
佳言2009完成签到,获得积分10
10秒前
10秒前
Emily完成签到,获得积分10
11秒前
11秒前
海德堡发布了新的文献求助10
11秒前
知性的水杯完成签到 ,获得积分10
11秒前
nick完成签到,获得积分10
12秒前
赤墨完成签到,获得积分10
12秒前
gy发布了新的文献求助10
12秒前
加减乘除完成签到,获得积分10
12秒前
独特的娩发布了新的文献求助10
13秒前
cookie完成签到,获得积分10
14秒前
wanci应助杭紫雪采纳,获得10
14秒前
scl发布了新的文献求助10
16秒前
庚朝年完成签到 ,获得积分10
17秒前
lxgz完成签到 ,获得积分10
17秒前
量子星尘发布了新的文献求助30
17秒前
xiuxiu完成签到 ,获得积分10
17秒前
Honey完成签到,获得积分10
20秒前
桑尼号完成签到,获得积分10
21秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3661181
求助须知:如何正确求助?哪些是违规求助? 3222298
关于积分的说明 9744486
捐赠科研通 2931912
什么是DOI,文献DOI怎么找? 1605300
邀请新用户注册赠送积分活动 757805
科研通“疑难数据库(出版商)”最低求助积分说明 734569