已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multistage adaptive distributionally robust optimization for the medical supplies distribution problem with uncertain demand in humanitarian aid

稳健优化 数学优化 计算机科学 运筹学 分布(数学) 数学 数学分析
作者
Y Yang,Zunhao Luo,Yongjian Yang,Dujuan Wang
出处
期刊:Computers & Operations Research [Elsevier BV]
卷期号:167: 106631-106631 被引量:1
标识
DOI:10.1016/j.cor.2024.106631
摘要

Production, inventory, distribution, and dispensing of relief resources are critical operational functions in humanitarian aid. To design an efficient humanitarian relief network, it is beneficial to study these operational functions in an integrated way. Accounting for the demand uncertainty of medical supplies, we propose a multistage adaptive distributionally robust model for the medical supplies distribution network design that considers simultaneously the issues of production, inventory, distribution and dispensing of medical resources, as well as the life-loss due to the delays in treatment. The objective is to dynamically match the supply and demand of medical supplies so as to minimize the total cost consisting of the production cost, holding cost, dispensing cost, and life-loss cost related to the unmet demand. We also introduce a safety-stock and production capacity model to efficiently predetermine the initial supply of medical supplies and maximum available production abilities under the given demand information. To obtain tractable formulations, we approximate the developed models using an enhanced linear decision rule (ELDR) and a simplified ELDR (SELDR), respectively. Using a set of real-world COVID-19 data, we show that (i) both the ELDR and SELDR can yield feasible solutions extremely close to the optimal solution of the multistage adaptive distributionally robust model, whereas the SELDR is about one order of magnitude faster than the ELDR; and (ii) accounting for the safety-stock and production capacity model yields significant improvements of the obtained solution, which can also inform the decision-maker about at least how many initial supply of vaccines and the maximum available production abilities should be set to counter the risk of demand uncertainty. We also analyze the impact of some model parameters to gain managerial implications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FIN应助科研通管家采纳,获得20
8秒前
FashionBoy应助科研通管家采纳,获得10
8秒前
SciGPT应助科研通管家采纳,获得10
8秒前
深情安青应助科研通管家采纳,获得10
8秒前
Lorain完成签到,获得积分20
10秒前
12秒前
13秒前
Lorain发布了新的文献求助10
14秒前
andrele发布了新的文献求助10
16秒前
libe完成签到,获得积分10
17秒前
青鸟发布了新的文献求助10
19秒前
淡淡的向雁完成签到,获得积分10
21秒前
安详映阳完成签到 ,获得积分10
25秒前
不开心就吃糖完成签到 ,获得积分10
27秒前
王馨月完成签到 ,获得积分10
27秒前
量子星尘发布了新的文献求助10
28秒前
楼北完成签到,获得积分10
29秒前
hihihi发布了新的文献求助30
33秒前
心随以动完成签到 ,获得积分10
33秒前
cc完成签到,获得积分10
38秒前
青鸟完成签到,获得积分20
38秒前
40秒前
43秒前
汪子发布了新的文献求助10
44秒前
sancao发布了新的文献求助10
44秒前
萤lueluelue发布了新的文献求助10
47秒前
52秒前
善学以致用应助sancao采纳,获得10
52秒前
52秒前
52秒前
aiw完成签到,获得积分10
53秒前
修辛完成签到 ,获得积分10
55秒前
Persist发布了新的文献求助10
56秒前
mint16关注了科研通微信公众号
56秒前
Persist发布了新的文献求助10
57秒前
Persist发布了新的文献求助10
57秒前
Akim应助明理的蜗牛采纳,获得10
1分钟前
华仔应助明理的蜗牛采纳,获得10
1分钟前
慕青应助明理的蜗牛采纳,获得10
1分钟前
今后应助明理的蜗牛采纳,获得10
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956962
求助须知:如何正确求助?哪些是违规求助? 3503011
关于积分的说明 11111001
捐赠科研通 3234007
什么是DOI,文献DOI怎么找? 1787710
邀请新用户注册赠送积分活动 870713
科研通“疑难数据库(出版商)”最低求助积分说明 802234