FRAMU: Attention-Based Machine Unlearning Using Federated Reinforcement Learning

计算机科学 强化学习 人工智能 机器学习 信息隐私 背景(考古学) 模态(人机交互) 适应性 领域(数学) 数据科学 计算机安全 古生物学 生态学 数学 纯数学 生物
作者
Thanveer Shaik,Xiaohui Tao,Lin Li,Haoran Xie,Taotao Cai,Xiaofeng Zhu,Qing Li
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:36 (10): 5153-5167 被引量:5
标识
DOI:10.1109/tkde.2024.3382726
摘要

Machine Unlearning, a pivotal field addressing data privacy in machine learning, necessitates efficient methods for the removal of private or irrelevant data. In this context, significant challenges arise, particularly in maintaining privacy and ensuring model efficiency when managing outdated, private, and irrelevant data. Such data not only compromises model accuracy but also burdens computational efficiency in both learning and unlearning processes. To mitigate these challenges, we introduce a novel framework: Attention-based Machine Unlearning using Federated Reinforcement Learning (FRAMU). This framework incorporates adaptive learning mechanisms, privacy preservation techniques, and optimization strategies, making it a well-rounded solution for handling various data sources, either single-modality or multi-modality, while maintaining accuracy and privacy. FRAMU's strengths include its adaptability in fluctuating data landscapes, its ability to unlearn outdated, private, or irrelevant data, and its support for continual model evolution without compromising privacy. Our experiments, conducted on both single-modality and multi-modality datasets, revealed that FRAMU significantly outperformed baseline models. Additional assessments of convergence behavior and optimization strategies further validate the framework's utility in federated learning applications. Overall, FRAMU advances Machine Unlearning by offering a robust, privacy-preserving solution that optimizes model performance while also addressing key challenges in dynamic data environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小黑完成签到,获得积分10
刚刚
刚刚
刚刚
1秒前
LJL发布了新的文献求助10
1秒前
2秒前
2秒前
JamesPei应助可爱冲击采纳,获得10
2秒前
阿西发布了新的文献求助30
2秒前
2秒前
3秒前
cccc完成签到,获得积分10
3秒前
苯基乙胺完成签到,获得积分10
3秒前
车宇发布了新的文献求助10
4秒前
4秒前
华仔应助ZIYE采纳,获得10
4秒前
4秒前
徐biao发布了新的文献求助10
4秒前
李开心呀完成签到,获得积分10
4秒前
华仔应助Sara采纳,获得10
4秒前
怕孤单的sky完成签到,获得积分10
4秒前
asd关闭了asd文献求助
5秒前
有魅力荟发布了新的文献求助10
5秒前
JXW2024完成签到,获得积分10
6秒前
邺水朱华发布了新的文献求助10
6秒前
我要向阳而生完成签到,获得积分10
6秒前
7秒前
共享精神应助帕尼灬尼采纳,获得10
7秒前
7秒前
仁爱的晓亦完成签到,获得积分10
8秒前
Liu发布了新的文献求助30
9秒前
xiaojing完成签到,获得积分10
10秒前
老实小刺猬完成签到,获得积分10
11秒前
彭于晏应助YuGe采纳,获得30
11秒前
在水一方应助邺水朱华采纳,获得10
12秒前
Jasper应助明亮的幻然采纳,获得10
12秒前
咳咳咳应助栗子采纳,获得10
13秒前
科研鸭完成签到,获得积分10
14秒前
14秒前
忧郁青亦完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3523628
求助须知:如何正确求助?哪些是违规求助? 3104493
关于积分的说明 9270150
捐赠科研通 2801245
什么是DOI,文献DOI怎么找? 1537570
邀请新用户注册赠送积分活动 715573
科研通“疑难数据库(出版商)”最低求助积分说明 708950