物理
阻力
涡流
边界层
湍流
机械
格子Boltzmann方法
复合材料
材料科学
出处
期刊:Physics of Fluids
[American Institute of Physics]
日期:2024-04-01
卷期号:36 (4)
被引量:3
摘要
Energy conservation and environmental protection have become pivotal components of the green economy. In recent years, underwater drag reduction technology has garnered significant interest. This study discusses a novel composite surface that combines divergent riblets with a superhydrophobic coating (D-rib&SHS) to enhance the drag reduction rate. Alongside this new surface, a riblet surface with a superhydrophobic coating (rib&SHS, without yaw angles) and a smooth surface are used as comparison groups. The turbulent boundary layer flow of these three surfaces is measured using a two-dimensional particle image velocimetry system. The results indicated that the maximum drag reduction rate of D-rib&SHS is approximately 27% higher than that of rib&SHS, and the drag reduction range is increased to Reθ≈4100 compared to rib&SHS (Reθ≈2200). Using correlation algorithms, it observed that the spacing between low-speed streaks over D-rib&SHS is larger than that of rib&SHS and the smooth surface. This finding suggested that the spacing between the hairpin vortex legs of D-rib&SHS is wider. The increased spacing between the hairpin vortex legs reduces the likelihood of vortex head formation between the two quasi-streamwise vortices, ultimately suppressing the auto-generation of hairpin vortices. Consequently, the development of hairpin vortex packets over D-rib&SHS is also inhibited. These phenomena observed over D-rib&SHS can be attributed to the combined effects of velocity slip on the superhydrophobic coating and the secondary flow over the divergent riblets near the wall. In addition, unlike divergent riblets that are not covered with a superhydrophobic coating, where the drag reduction effect is more pronounced with a yaw angle of 30° compared to 10°, D-rib&SHS with a 10° yaw angle demonstrated a superior drag reduction effect compared to D-rib&SHS with a 30° yaw angle. This innovative composite surface enhances the drag reduction effect and expands the drag reduction Reynolds number range, offering a new approach to mitigating drag in turbulent boundary layer flows.
科研通智能强力驱动
Strongly Powered by AbleSci AI