SRTRP-Net: A multi-task learning network for segmentation and prediction of stereotactic radiosurgery treatment response in brain metastases

放射外科 任务(项目管理) 计算机科学 人工智能 分割 机器学习 医学 放射科 放射治疗 管理 经济
作者
Xiao Liu,Peng Du,Zhiguang Dai,Rumeng Yi,Weifan Liu,Hao Chen,Daoying Geng,Jie Liu
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:: 108503-108503
标识
DOI:10.1016/j.compbiomed.2024.108503
摘要

Before the Stereotactic Radiosurgery (SRS) treatment, it is of great clinical significance to avoid secondary genetic damage and guide the personalized treatment plans for patients with brain metastases (BM) by predicting the response to SRS treatment of brain metastatic lesions. Thus, we developed a multi-task learning model termed SRTRP-Net to provide prior knowledge of BM ROI and predict the SRS treatment response of the lesion. In dual-encoder tumor segmentation Network (DTS-Net), two parallel encoders encode the original and mirrored multi-modal MRI images. The differences in the dual-encoder features between foreground and background are enhanced by the symmetrical visual difference block (SVDB). In the bottom layer of the encoder, a transformer is used to extract local contextual features in the spatial and depth dimensions of low-resolution images. Then, the decoder of DTS-Net provides the prior knowledge for predicting the response to SRS treatment by performing BM segmentation. SRS response prediction network (SRP-Net) directly utilizes shared multi-modal MRI features weighted by the signed distance map (SDM) of the masks. The bidirectional multi-dimensional feature fusion module (BMDF) fuses the shared features and the clinical text information features to obtain comprehensive tumor information for characterizing tumors and predicting SRS treatment response. Experiments based on internal and external clinical datasets have shown that SRTRP-Net achieves comparable or better results. We believe that SRTRP-Net can help clinicians accurately develop personalized first-time treatment regimens for BM patients and improve their survival.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
oceanao应助羅卜貳采纳,获得10
1秒前
孤独元容发布了新的文献求助10
2秒前
volition发布了新的文献求助10
3秒前
科研通AI2S应助风中听枫采纳,获得10
3秒前
523完成签到,获得积分10
4秒前
4秒前
上官若男应助谦让寄容采纳,获得10
5秒前
dopamine完成签到,获得积分10
7秒前
8秒前
oceanao举报景辣条求助涉嫌违规
9秒前
oceanao应助ZJYcici采纳,获得10
11秒前
读研好难完成签到,获得积分10
12秒前
13秒前
繁荣的忆文完成签到,获得积分10
13秒前
私心無名完成签到,获得积分10
14秒前
贺艳芳完成签到 ,获得积分10
14秒前
16秒前
天天快乐应助奇异物质采纳,获得10
16秒前
17秒前
18秒前
子清完成签到,获得积分0
18秒前
18秒前
可乐发布了新的文献求助10
21秒前
21秒前
QUHUI完成签到,获得积分10
21秒前
21秒前
贺艳芳关注了科研通微信公众号
22秒前
HEEY完成签到,获得积分20
23秒前
yukriyy发布了新的文献求助10
23秒前
qgyj发布了新的文献求助10
24秒前
24秒前
XPR发布了新的文献求助10
27秒前
熹熹发布了新的文献求助10
29秒前
可乐完成签到,获得积分20
29秒前
Hello应助细心孤丹采纳,获得10
31秒前
31秒前
33秒前
33秒前
HEEY发布了新的文献求助10
34秒前
35秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164260
求助须知:如何正确求助?哪些是违规求助? 2815000
关于积分的说明 7907415
捐赠科研通 2474608
什么是DOI,文献DOI怎么找? 1317598
科研通“疑难数据库(出版商)”最低求助积分说明 631857
版权声明 602228