亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

SRTRP-Net: A multi-task learning network for segmentation and prediction of stereotactic radiosurgery treatment response in brain metastases

放射外科 任务(项目管理) 计算机科学 人工智能 分割 机器学习 医学 放射科 放射治疗 管理 经济
作者
Xiao Liu,Peng Du,Zhiguang Dai,Rumeng Yi,Weifan Liu,Hao Chen,Daoying Geng,Jie Liu
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:: 108503-108503
标识
DOI:10.1016/j.compbiomed.2024.108503
摘要

Before the Stereotactic Radiosurgery (SRS) treatment, it is of great clinical significance to avoid secondary genetic damage and guide the personalized treatment plans for patients with brain metastases (BM) by predicting the response to SRS treatment of brain metastatic lesions. Thus, we developed a multi-task learning model termed SRTRP-Net to provide prior knowledge of BM ROI and predict the SRS treatment response of the lesion. In dual-encoder tumor segmentation Network (DTS-Net), two parallel encoders encode the original and mirrored multi-modal MRI images. The differences in the dual-encoder features between foreground and background are enhanced by the symmetrical visual difference block (SVDB). In the bottom layer of the encoder, a transformer is used to extract local contextual features in the spatial and depth dimensions of low-resolution images. Then, the decoder of DTS-Net provides the prior knowledge for predicting the response to SRS treatment by performing BM segmentation. SRS response prediction network (SRP-Net) directly utilizes shared multi-modal MRI features weighted by the signed distance map (SDM) of the masks. The bidirectional multi-dimensional feature fusion module (BMDF) fuses the shared features and the clinical text information features to obtain comprehensive tumor information for characterizing tumors and predicting SRS treatment response. Experiments based on internal and external clinical datasets have shown that SRTRP-Net achieves comparable or better results. We believe that SRTRP-Net can help clinicians accurately develop personalized first-time treatment regimens for BM patients and improve their survival.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助科研通管家采纳,获得10
1秒前
zsmj23完成签到 ,获得积分0
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
研小小小小白完成签到,获得积分10
11秒前
111111111发布了新的文献求助10
24秒前
48秒前
52秒前
53秒前
sofardli发布了新的文献求助20
54秒前
56秒前
nanali19发布了新的文献求助10
1分钟前
1分钟前
nanali19完成签到,获得积分10
1分钟前
万能图书馆应助sofardli采纳,获得10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
曦麟完成签到 ,获得积分10
2分钟前
2分钟前
斯文败类应助科研通管家采纳,获得10
2分钟前
2分钟前
Lin发布了新的文献求助10
2分钟前
2分钟前
SCINEXUS完成签到,获得积分0
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
老迟到的梦旋完成签到 ,获得积分10
3分钟前
3分钟前
负责以山完成签到 ,获得积分10
3分钟前
科研通AI5应助科研通管家采纳,获得10
4分钟前
cc应助科研通管家采纳,获得10
4分钟前
一只小锦鲤完成签到 ,获得积分10
4分钟前
西山菩提完成签到,获得积分10
4分钟前
量子星尘发布了新的文献求助20
5分钟前
lixuebin完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
sujingbo发布了新的文献求助100
5分钟前
sofardli发布了新的文献求助10
5分钟前
6分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957065
求助须知:如何正确求助?哪些是违规求助? 3503084
关于积分的说明 11111255
捐赠科研通 3234124
什么是DOI,文献DOI怎么找? 1787751
邀请新用户注册赠送积分活动 870772
科研通“疑难数据库(出版商)”最低求助积分说明 802264