放射外科
任务(项目管理)
计算机科学
人工智能
分割
机器学习
医学
放射科
放射治疗
管理
经济
作者
Xiao Liu,Peng Du,Zhiguang Dai,Rumeng Yi,Weifan Liu,Hao Chen,Daoying Geng,Jie Liu
标识
DOI:10.1016/j.compbiomed.2024.108503
摘要
Before the Stereotactic Radiosurgery (SRS) treatment, it is of great clinical significance to avoid secondary genetic damage and guide the personalized treatment plans for patients with brain metastases (BM) by predicting the response to SRS treatment of brain metastatic lesions. Thus, we developed a multi-task learning model termed SRTRP-Net to provide prior knowledge of BM ROI and predict the SRS treatment response of the lesion. In dual-encoder tumor segmentation Network (DTS-Net), two parallel encoders encode the original and mirrored multi-modal MRI images. The differences in the dual-encoder features between foreground and background are enhanced by the symmetrical visual difference block (SVDB). In the bottom layer of the encoder, a transformer is used to extract local contextual features in the spatial and depth dimensions of low-resolution images. Then, the decoder of DTS-Net provides the prior knowledge for predicting the response to SRS treatment by performing BM segmentation. SRS response prediction network (SRP-Net) directly utilizes shared multi-modal MRI features weighted by the signed distance map (SDM) of the masks. The bidirectional multi-dimensional feature fusion module (BMDF) fuses the shared features and the clinical text information features to obtain comprehensive tumor information for characterizing tumors and predicting SRS treatment response. Experiments based on internal and external clinical datasets have shown that SRTRP-Net achieves comparable or better results. We believe that SRTRP-Net can help clinicians accurately develop personalized first-time treatment regimens for BM patients and improve their survival.
科研通智能强力驱动
Strongly Powered by AbleSci AI