Federated Learning With Non-IID Data: A Survey

计算机科学 数据建模 数据库
作者
Zili Lu,Heng Pan,Yueyue Dai,Xueming Si,Yan Zhang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (11): 19188-19209 被引量:84
标识
DOI:10.1109/jiot.2024.3376548
摘要

Federated learning (FL) is an efficient decentralized machine learning methodology for processing non-independent and identically distributed (non-IID) data due to geographical and temporal distribution differences. Non-IID data generally indicates substantial disparities in data distribution and features among clients. This assumption is completely different from the conventional assumption of independent and identically distributed (IID) data in which all clients' data originates from the same distribution. There are many factors that affect the features of non-IID data, such as user preferences, data collection methods, and client characteristics. The factors of data distribution, category proportions, and feature representation also affect the statistical properties of non-IID data. This paper conducts an in-depth exploration of FL with the consideration of diverse features and statistical properties of non-IID data. Specifically, we first discuss the impact of non-IID data on communication efficiency, model convergence, and FL accuracy. The presence of non-IID data leads to increased communication overhead, imbalanced class distribution, and uneven local model updates. All of these affect FL convergence and performance. Then, we present the latest advanced techniques, such as data partitioning/sharing, client selection, differential privacy, and secure aggregation [1], which are used to address the challenges posed by non-IID data in terms of communication efficiency and privacy protection. Furthermore, we show the emerging applications and use cases of FL with non-IID data in various domains, such as healthcare, IoT, and edge computing. Overall, this survey provides a comprehensive understanding of FL with non-IID data, including the challenges, advancements, and practical applications in different areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
王大白完成签到,获得积分20
1秒前
解羽发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
77要努力完成签到,获得积分10
2秒前
3秒前
Andy发布了新的文献求助50
4秒前
桐桐应助wjx采纳,获得10
4秒前
清茶一抹完成签到,获得积分10
4秒前
5秒前
科研通AI6应助咸咸咸蛋黄采纳,获得10
6秒前
6秒前
疯了半天完成签到,获得积分10
6秒前
lilili应助BANG采纳,获得10
7秒前
明亮的元正完成签到 ,获得积分10
7秒前
完美世界应助解羽采纳,获得10
7秒前
linXY发布了新的文献求助10
8秒前
炙热短靴发布了新的文献求助10
11秒前
我行我素发布了新的文献求助10
12秒前
12秒前
梅道理完成签到,获得积分10
12秒前
嘛吉发布了新的文献求助10
14秒前
gulu发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
14秒前
善学以致用应助一棵树采纳,获得10
15秒前
超人不会飞完成签到 ,获得积分10
15秒前
BANG完成签到,获得积分20
15秒前
16秒前
17秒前
洛苏发布了新的文献求助10
17秒前
JI完成签到,获得积分20
17秒前
达八八八发布了新的文献求助10
17秒前
完美世界应助liugm采纳,获得10
19秒前
CipherSage应助hsa_ID采纳,获得200
19秒前
朵丫发布了新的文献求助10
19秒前
fx发布了新的文献求助20
19秒前
Andy完成签到,获得积分10
20秒前
事不过三应助MOOTEA采纳,获得10
20秒前
20秒前
明人不放暗屁完成签到 ,获得积分10
21秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125754
求助须知:如何正确求助?哪些是违规求助? 4329444
关于积分的说明 13491137
捐赠科研通 4164408
什么是DOI,文献DOI怎么找? 2282909
邀请新用户注册赠送积分活动 1283936
关于科研通互助平台的介绍 1223344