Federated Learning With Non-IID Data: A Survey

计算机科学 数据建模 数据库
作者
Z.J. Lu,Heng Pan,Yueyue Dai,Xueming Si,Yan Zhang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (11): 19188-19209 被引量:23
标识
DOI:10.1109/jiot.2024.3376548
摘要

Federated learning (FL) is an efficient decentralized machine learning methodology for processing non-independent and identically distributed (non-IID) data due to geographical and temporal distribution differences. Non-IID data generally indicates substantial disparities in data distribution and features among clients. This assumption is completely different from the conventional assumption of independent and identically distributed (IID) data in which all clients' data originates from the same distribution. There are many factors that affect the features of non-IID data, such as user preferences, data collection methods, and client characteristics. The factors of data distribution, category proportions, and feature representation also affect the statistical properties of non-IID data. This paper conducts an in-depth exploration of FL with the consideration of diverse features and statistical properties of non-IID data. Specifically, we first discuss the impact of non-IID data on communication efficiency, model convergence, and FL accuracy. The presence of non-IID data leads to increased communication overhead, imbalanced class distribution, and uneven local model updates. All of these affect FL convergence and performance. Then, we present the latest advanced techniques, such as data partitioning/sharing, client selection, differential privacy, and secure aggregation [1], which are used to address the challenges posed by non-IID data in terms of communication efficiency and privacy protection. Furthermore, we show the emerging applications and use cases of FL with non-IID data in various domains, such as healthcare, IoT, and edge computing. Overall, this survey provides a comprehensive understanding of FL with non-IID data, including the challenges, advancements, and practical applications in different areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助沉静亦寒采纳,获得10
1秒前
Hello应助柔柔采纳,获得10
2秒前
明芬发布了新的文献求助10
2秒前
王子倩发布了新的文献求助10
3秒前
zzz发布了新的文献求助10
3秒前
holland完成签到 ,获得积分10
3秒前
coldspringhao发布了新的文献求助20
4秒前
爹爹发布了新的文献求助10
4秒前
4秒前
深呼吸完成签到,获得积分10
5秒前
6秒前
长乐完成签到,获得积分10
6秒前
8秒前
8秒前
10秒前
远荒完成签到,获得积分20
10秒前
Carry发布了新的文献求助10
10秒前
11秒前
11秒前
12秒前
古工楼完成签到,获得积分10
13秒前
14秒前
taozjju完成签到,获得积分10
14秒前
鸭梨完成签到 ,获得积分10
14秒前
明芬完成签到,获得积分10
15秒前
深情安青应助Fishball采纳,获得10
15秒前
pingpinglver发布了新的文献求助10
17秒前
小趴菜完成签到,获得积分0
17秒前
Khr1stINK发布了新的文献求助10
17秒前
沉静亦寒发布了新的文献求助10
18秒前
搜集达人应助Carry采纳,获得10
20秒前
华仔应助wanwan采纳,获得10
20秒前
慕青应助花Cheung采纳,获得10
20秒前
搜集达人应助ShengzhangLiu采纳,获得10
22秒前
GT完成签到,获得积分10
23秒前
大个应助王子倩采纳,获得10
25秒前
华仔应助huangsi采纳,获得10
25秒前
26秒前
田様应助可爱的安萱采纳,获得10
30秒前
bai发布了新的文献求助10
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3991967
求助须知:如何正确求助?哪些是违规求助? 3533047
关于积分的说明 11260597
捐赠科研通 3272377
什么是DOI,文献DOI怎么找? 1805789
邀请新用户注册赠送积分活动 882660
科研通“疑难数据库(出版商)”最低求助积分说明 809425