亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Federated Learning With Non-IID Data: A Survey

计算机科学 数据建模 数据库
作者
Zili Lu,Heng Pan,Yueyue Dai,Xueming Si,Yan Zhang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (11): 19188-19209 被引量:165
标识
DOI:10.1109/jiot.2024.3376548
摘要

Federated learning (FL) is an efficient decentralized machine learning methodology for processing non-independent and identically distributed (non-IID) data due to geographical and temporal distribution differences. Non-IID data generally indicates substantial disparities in data distribution and features among clients. This assumption is completely different from the conventional assumption of independent and identically distributed (IID) data in which all clients' data originates from the same distribution. There are many factors that affect the features of non-IID data, such as user preferences, data collection methods, and client characteristics. The factors of data distribution, category proportions, and feature representation also affect the statistical properties of non-IID data. This paper conducts an in-depth exploration of FL with the consideration of diverse features and statistical properties of non-IID data. Specifically, we first discuss the impact of non-IID data on communication efficiency, model convergence, and FL accuracy. The presence of non-IID data leads to increased communication overhead, imbalanced class distribution, and uneven local model updates. All of these affect FL convergence and performance. Then, we present the latest advanced techniques, such as data partitioning/sharing, client selection, differential privacy, and secure aggregation [1], which are used to address the challenges posed by non-IID data in terms of communication efficiency and privacy protection. Furthermore, we show the emerging applications and use cases of FL with non-IID data in various domains, such as healthcare, IoT, and edge computing. Overall, this survey provides a comprehensive understanding of FL with non-IID data, including the challenges, advancements, and practical applications in different areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助科研通管家采纳,获得10
7秒前
纯真如松完成签到,获得积分10
8秒前
aaa5a123完成签到 ,获得积分10
10秒前
nuo发布了新的文献求助10
40秒前
43秒前
白白白发布了新的文献求助10
46秒前
50秒前
李爱国应助昏睡的向真采纳,获得30
52秒前
nuo完成签到,获得积分20
54秒前
白白白完成签到,获得积分10
58秒前
1分钟前
1分钟前
Caleb完成签到,获得积分10
1分钟前
1分钟前
852应助当晚星散落采纳,获得10
1分钟前
1分钟前
1分钟前
Laoxing258发布了新的文献求助10
1分钟前
1分钟前
小二郎应助石榴汁的书采纳,获得10
1分钟前
发篇Sci不过分吧完成签到,获得积分10
1分钟前
酷酷海豚完成签到,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
abc应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
abc应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
我是老大应助Laoxing258采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
FAYE发布了新的文献求助10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5755072
求助须知:如何正确求助?哪些是违规求助? 5491124
关于积分的说明 15380800
捐赠科研通 4893386
什么是DOI,文献DOI怎么找? 2631982
邀请新用户注册赠送积分活动 1579839
关于科研通互助平台的介绍 1535675