Federated Learning With Non-IID Data: A Survey

计算机科学 数据建模 数据库
作者
Zili Lu,Heng Pan,Yueyue Dai,Xueming Si,Yan Zhang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (11): 19188-19209 被引量:145
标识
DOI:10.1109/jiot.2024.3376548
摘要

Federated learning (FL) is an efficient decentralized machine learning methodology for processing non-independent and identically distributed (non-IID) data due to geographical and temporal distribution differences. Non-IID data generally indicates substantial disparities in data distribution and features among clients. This assumption is completely different from the conventional assumption of independent and identically distributed (IID) data in which all clients' data originates from the same distribution. There are many factors that affect the features of non-IID data, such as user preferences, data collection methods, and client characteristics. The factors of data distribution, category proportions, and feature representation also affect the statistical properties of non-IID data. This paper conducts an in-depth exploration of FL with the consideration of diverse features and statistical properties of non-IID data. Specifically, we first discuss the impact of non-IID data on communication efficiency, model convergence, and FL accuracy. The presence of non-IID data leads to increased communication overhead, imbalanced class distribution, and uneven local model updates. All of these affect FL convergence and performance. Then, we present the latest advanced techniques, such as data partitioning/sharing, client selection, differential privacy, and secure aggregation [1], which are used to address the challenges posed by non-IID data in terms of communication efficiency and privacy protection. Furthermore, we show the emerging applications and use cases of FL with non-IID data in various domains, such as healthcare, IoT, and edge computing. Overall, this survey provides a comprehensive understanding of FL with non-IID data, including the challenges, advancements, and practical applications in different areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我真的要早起完成签到 ,获得积分10
1秒前
1秒前
科目三应助YanDongXu采纳,获得10
3秒前
量子星尘发布了新的文献求助10
4秒前
游泳的酸菜铺盖面完成签到,获得积分10
6秒前
7秒前
小白白完成签到,获得积分10
7秒前
HJJHJH发布了新的文献求助10
7秒前
我真的要早起关注了科研通微信公众号
8秒前
9秒前
大模型应助xu1227采纳,获得10
9秒前
传奇3应助xu1227采纳,获得10
9秒前
NexusExplorer应助xu1227采纳,获得10
9秒前
开心友儿完成签到,获得积分10
11秒前
清风细雨完成签到 ,获得积分10
12秒前
张三顺完成签到,获得积分10
12秒前
香蕉觅云应助lins采纳,获得10
13秒前
zhengyalan发布了新的文献求助10
13秒前
xxfsx应助YanDongXu采纳,获得10
13秒前
cy发布了新的文献求助10
14秒前
义气凡霜完成签到,获得积分10
14秒前
吴巧完成签到,获得积分10
15秒前
Komorebi完成签到 ,获得积分10
17秒前
18秒前
领导范儿应助angelinazh采纳,获得10
19秒前
chen完成签到,获得积分10
20秒前
777完成签到 ,获得积分10
20秒前
20秒前
共享精神应助lulu采纳,获得10
20秒前
20秒前
21秒前
21秒前
hh关闭了hh文献求助
22秒前
牛阳雨发布了新的文献求助10
23秒前
大模型应助真实的小伙采纳,获得10
24秒前
予城发布了新的文献求助10
24秒前
lins发布了新的文献求助10
24秒前
xxm发布了新的文献求助10
25秒前
Niniiii应助萝卜青菜采纳,获得10
25秒前
YanDongXu完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425184
求助须知:如何正确求助?哪些是违规求助? 4539282
关于积分的说明 14166597
捐赠科研通 4456440
什么是DOI,文献DOI怎么找? 2444204
邀请新用户注册赠送积分活动 1435246
关于科研通互助平台的介绍 1412568