Federated Learning With Non-IID Data: A Survey

计算机科学 数据建模 数据库
作者
Z.J. Lu,Heng Pan,Yueyue Dai,Xueming Si,Yan Zhang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (11): 19188-19209 被引量:23
标识
DOI:10.1109/jiot.2024.3376548
摘要

Federated learning (FL) is an efficient decentralized machine learning methodology for processing non-independent and identically distributed (non-IID) data due to geographical and temporal distribution differences. Non-IID data generally indicates substantial disparities in data distribution and features among clients. This assumption is completely different from the conventional assumption of independent and identically distributed (IID) data in which all clients' data originates from the same distribution. There are many factors that affect the features of non-IID data, such as user preferences, data collection methods, and client characteristics. The factors of data distribution, category proportions, and feature representation also affect the statistical properties of non-IID data. This paper conducts an in-depth exploration of FL with the consideration of diverse features and statistical properties of non-IID data. Specifically, we first discuss the impact of non-IID data on communication efficiency, model convergence, and FL accuracy. The presence of non-IID data leads to increased communication overhead, imbalanced class distribution, and uneven local model updates. All of these affect FL convergence and performance. Then, we present the latest advanced techniques, such as data partitioning/sharing, client selection, differential privacy, and secure aggregation [1], which are used to address the challenges posed by non-IID data in terms of communication efficiency and privacy protection. Furthermore, we show the emerging applications and use cases of FL with non-IID data in various domains, such as healthcare, IoT, and edge computing. Overall, this survey provides a comprehensive understanding of FL with non-IID data, including the challenges, advancements, and practical applications in different areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
spring发布了新的文献求助10
刚刚
刚刚
科研通AI2S应助baishd采纳,获得10
1秒前
无限安梦完成签到,获得积分20
1秒前
在水一方应助hxnz2001采纳,获得10
1秒前
1秒前
顺心冬易发布了新的文献求助10
1秒前
2秒前
3秒前
可靠幼旋应助hyhyhyhy采纳,获得10
5秒前
方圆学术完成签到,获得积分10
5秒前
starying发布了新的文献求助10
6秒前
6秒前
花花发布了新的文献求助10
6秒前
梦里的三片雪花完成签到,获得积分20
7秒前
hanyang965发布了新的文献求助10
8秒前
10秒前
10秒前
Hoooo...发布了新的文献求助10
11秒前
胡研关注了科研通微信公众号
12秒前
打打应助周梦蝶采纳,获得10
13秒前
专注寻菱完成签到,获得积分10
14秒前
15秒前
15秒前
槿忆萱影应助hyhyhyhy采纳,获得10
16秒前
粗犷的凝芙关注了科研通微信公众号
17秒前
细心的亦凝完成签到 ,获得积分10
18秒前
18秒前
yinjs158完成签到,获得积分10
19秒前
毛豆应助求帮帮我采纳,获得10
19秒前
深情安青应助Hoooo...采纳,获得10
19秒前
Psr完成签到,获得积分20
21秒前
sunny完成签到,获得积分10
23秒前
优雅冰海发布了新的文献求助10
23秒前
默默怀绿完成签到,获得积分10
23秒前
24秒前
25秒前
Akim应助woxiangbiye采纳,获得10
26秒前
无限安梦发布了新的文献求助10
27秒前
明理的又柔完成签到,获得积分10
28秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310257
求助须知:如何正确求助?哪些是违规求助? 2943243
关于积分的说明 8513288
捐赠科研通 2618458
什么是DOI,文献DOI怎么找? 1431082
科研通“疑难数据库(出版商)”最低求助积分说明 664374
邀请新用户注册赠送积分活动 649542