规范化(社会学)
非线性系统
递归(计算机科学)
光学(聚焦)
统计物理学
计算机科学
操作员(生物学)
海森堡图片
空格(标点符号)
领域
数学
应用数学
物理
算法
量子
量子力学
光学
操作系统
生物化学
化学
抑制因子
社会学
人类学
转录因子
法学
政治学
基因
作者
Talat Körpınar,Rıdvan Cem Demi̇rkol
标识
DOI:10.1142/s0217984924503068
摘要
This paper delves into the exploration of directional recursion operators within the realm of regular space curves modeled by Heisenberg systems. The central objective is to introduce a myriad of recursive flows, encompassing ferromagnetic and antiferromagnetic solutions, alongside a family of general normalization operators in the normal and binormal directions. The study employs the extended compatible and inextensible flow model of curves to examine the evolution models, providing a comprehensive understanding of their dynamics. A significant aspect of the investigation involves elucidating the evolution model in terms of anholonomy shapes and their density. The directional recursive operator, a focus of this study, demonstrates distinct results compared to traditional approaches. The reliability and applicability of the obtained results extend to the examination of various linear and nonlinear continuous dynamical systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI