Risk field enhanced game theoretic model for interpretable and consistent lane-changing decision makings

可解释性 计算机科学 一致性(知识库) 领域(数学) 航程(航空) 校准 模拟 人工智能 数学 工程类 统计 航空航天工程 纯数学
作者
Taokai Xia,Hui Chen,Shaoka Su
出处
期刊:SAE technical paper series
标识
DOI:10.4271/2024-01-2566
摘要

<div class="section abstract"><div class="htmlview paragraph">This paper presents an integrated modeling approach for real-time discretionary lane-changing decisions by autonomous vehicles, aiming to achieve human-like behavior. The approach incorporates a two-player normal-form game and a novel risk field method. The normal-form game represents the strategic interactions among traffic participants. It captures the trade-offs between lane-changing benefits and risks based on vehicle motion states during a lane change. By continuously determining the Nash equilibrium of the game at each time step, the model decides when it is appropriate to change the lane. A novel risk field method is integrated with the game to model risks in the game pay-offs. The risk field introduces regions along the desired target lane with different time headway ranges and risk weights, capturing traffic participants' complex risk perceptions and considerations in lane-changing scenarios. It goes beyond simple gap acceptance assumptions used in previous studies, providing more human-like risk estimations. Discretionary lane-changing data from human drivers extracted from the NGSIM I80 dataset were employed to calibrate the integrated model for human-like lane-change decisions. The calibration results demonstrate the high prediction accuracy of the proposed model compared to previous studies. The calibrated risk field parameters in the model provide interpretability and contribute to a deeper understanding of human lane-changing decisions. The proposed model also exhibits improved consistency in lane-changing decisions within a continuous time range around the lane-crossing moment. It outperforms previous game-theoretic models that rely on acceleration and time pay-offs with specific assumptions about future vehicle motions. Several case studies were carried out in the co-simulations of CARLA and SUMO software and based on the NGSIM dataset samples. The model's ability to produce reliable and interpretable lane-changing decisions enhances autonomous vehicles' overall safety and user experience.</div></div>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大橙子发布了新的文献求助10
刚刚
9239完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
songvv发布了新的文献求助10
1秒前
飒飒发布了新的文献求助10
2秒前
慧灰huihui完成签到,获得积分10
2秒前
Star完成签到,获得积分10
4秒前
4秒前
柔弱的不二完成签到,获得积分10
5秒前
无心的枫完成签到,获得积分10
7秒前
djdh完成签到 ,获得积分10
7秒前
肖果完成签到 ,获得积分10
10秒前
哭泣笑柳发布了新的文献求助10
11秒前
CipherSage应助长安采纳,获得10
12秒前
飒飒完成签到,获得积分10
13秒前
RONG完成签到 ,获得积分10
13秒前
落落完成签到,获得积分10
14秒前
Yan完成签到 ,获得积分10
15秒前
15秒前
谨慎的凝丝完成签到 ,获得积分10
16秒前
雨洋完成签到,获得积分10
17秒前
chi完成签到 ,获得积分10
18秒前
还单身的湘完成签到,获得积分10
20秒前
fyjlfy完成签到 ,获得积分10
20秒前
深情安青应助Nayvue采纳,获得10
21秒前
研友_Y59785完成签到,获得积分0
21秒前
Xiaoxiao发布了新的文献求助10
22秒前
初初见你完成签到,获得积分10
29秒前
32秒前
思源应助淡淡月饼采纳,获得20
32秒前
dd完成签到 ,获得积分10
33秒前
Nayvue发布了新的文献求助10
37秒前
未来的幻想完成签到,获得积分10
39秒前
Kvolu29完成签到,获得积分10
40秒前
长理物电强完成签到,获得积分10
41秒前
若安在完成签到,获得积分10
42秒前
完美世界应助潘特采纳,获得10
43秒前
拼搏问薇完成签到 ,获得积分10
43秒前
单薄乐珍完成签到 ,获得积分0
46秒前
张静枝完成签到 ,获得积分10
46秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038184
求助须知:如何正确求助?哪些是违规求助? 3575908
关于积分的说明 11373872
捐赠科研通 3305715
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022