亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Risk field enhanced game theoretic model for interpretable and consistent lane-changing decision makings

可解释性 计算机科学 一致性(知识库) 领域(数学) 航程(航空) 校准 模拟 人工智能 数学 工程类 统计 纯数学 航空航天工程
作者
Taokai Xia,Hui Chen,Shaoka Su
出处
期刊:SAE technical paper series
标识
DOI:10.4271/2024-01-2566
摘要

<div class="section abstract"><div class="htmlview paragraph">This paper presents an integrated modeling approach for real-time discretionary lane-changing decisions by autonomous vehicles, aiming to achieve human-like behavior. The approach incorporates a two-player normal-form game and a novel risk field method. The normal-form game represents the strategic interactions among traffic participants. It captures the trade-offs between lane-changing benefits and risks based on vehicle motion states during a lane change. By continuously determining the Nash equilibrium of the game at each time step, the model decides when it is appropriate to change the lane. A novel risk field method is integrated with the game to model risks in the game pay-offs. The risk field introduces regions along the desired target lane with different time headway ranges and risk weights, capturing traffic participants' complex risk perceptions and considerations in lane-changing scenarios. It goes beyond simple gap acceptance assumptions used in previous studies, providing more human-like risk estimations. Discretionary lane-changing data from human drivers extracted from the NGSIM I80 dataset were employed to calibrate the integrated model for human-like lane-change decisions. The calibration results demonstrate the high prediction accuracy of the proposed model compared to previous studies. The calibrated risk field parameters in the model provide interpretability and contribute to a deeper understanding of human lane-changing decisions. The proposed model also exhibits improved consistency in lane-changing decisions within a continuous time range around the lane-crossing moment. It outperforms previous game-theoretic models that rely on acceleration and time pay-offs with specific assumptions about future vehicle motions. Several case studies were carried out in the co-simulations of CARLA and SUMO software and based on the NGSIM dataset samples. The model's ability to produce reliable and interpretable lane-changing decisions enhances autonomous vehicles' overall safety and user experience.</div></div>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CATH完成签到 ,获得积分10
38秒前
54秒前
55秒前
Jack发布了新的文献求助30
1分钟前
深情安青应助don采纳,获得10
1分钟前
Hello应助Jack采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
涵涵耶耶发布了新的文献求助10
1分钟前
XYZ发布了新的文献求助10
1分钟前
CipherSage应助liudy采纳,获得10
1分钟前
XYZ完成签到,获得积分10
1分钟前
顺心盼山关注了科研通微信公众号
1分钟前
Owen应助涵涵耶耶采纳,获得10
1分钟前
1分钟前
liudy完成签到,获得积分10
1分钟前
1分钟前
liudy发布了新的文献求助10
1分钟前
涵涵耶耶完成签到,获得积分10
1分钟前
2分钟前
顺心盼山发布了新的文献求助10
2分钟前
许大脚完成签到 ,获得积分10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
特特雷珀萨努完成签到 ,获得积分10
3分钟前
研友_VZG7GZ应助可靠的寒风采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
狂野晓蕾完成签到,获得积分20
5分钟前
沉静代芹完成签到 ,获得积分10
5分钟前
文文发布了新的文献求助10
6分钟前
6分钟前
wax应助文文采纳,获得10
6分钟前
多读苏发布了新的文献求助10
6分钟前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3335334
求助须知:如何正确求助?哪些是违规求助? 2964501
关于积分的说明 8614028
捐赠科研通 2643363
什么是DOI,文献DOI怎么找? 1447401
科研通“疑难数据库(出版商)”最低求助积分说明 670597
邀请新用户注册赠送积分活动 658974