Cross-patch feature interactive net with edge refinement for retinal vessel segmentation

计算机科学 分割 人工智能 编码器 特征(语言学) 背景(考古学) 计算机视觉 深度学习 图像分割 过程(计算) 模式识别(心理学) 语言学 生物 操作系统 哲学 古生物学
作者
Ning Kang,Maofa Wang,Cheng Pang,Rushi Lan,Bingbing Li,Junlin Guan,Huadeng Wang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:174: 108443-108443 被引量:3
标识
DOI:10.1016/j.compbiomed.2024.108443
摘要

Retinal vessel segmentation based on deep learning is an important auxiliary method for assisting clinical doctors in diagnosing retinal diseases. However, existing methods often produce mis-segmentation when dealing with low contrast images and thin blood vessels, which affects the continuity and integrity of the vessel skeleton. In addition, existing deep learning methods tend to lose a lot of detailed information during training, which affects the accuracy of segmentation. To address these issues, we propose a novel dual-decoder based Cross-patch Feature Interactive Net with Edge Refinement (CFI-Net) for end-to-end retinal vessel segmentation. In the encoder part, a joint refinement down-sampling method (JRDM) is proposed to compress feature information in the process of reducing image size, so as to reduce the loss of thin vessels and vessel edge information during the encoding process. In the decoder part, we adopt a dual-path model based on edge detection, and propose a Cross-patch Interactive Attention Mechanism (CIAM) in the main path to enhancing multi-scale spatial channel features and transferring cross-spatial information. Consequently, it improve the network's ability to segment complete and continuous vessel skeletons, reducing vessel segmentation fractures. Finally, the Adaptive Spatial Context Guide Method (ASCGM) is proposed to fuse the prediction results of the two decoder paths, which enhances segmentation details while removing part of the background noise. We evaluated our model on two retinal image datasets and one coronary angiography dataset, achieving outstanding performance in segmentation comprehensive assessment metrics such as AUC and CAL. The experimental results showed that the proposed CFI-Net has superior segmentation performance compared with other existing methods, especially for thin vessels and vessel edges. The code is available at https://github.com/kita0420/CFI-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助CY采纳,获得10
刚刚
hkh发布了新的文献求助10
1秒前
1秒前
123456发布了新的文献求助10
1秒前
1秒前
田様应助ZWK采纳,获得10
1秒前
英姑应助SS2D采纳,获得10
2秒前
3秒前
3秒前
还没想好昵称完成签到,获得积分10
3秒前
坦率不惜发布了新的文献求助10
3秒前
大模型应助jack采纳,获得10
3秒前
小孩儿发布了新的文献求助10
4秒前
虚拟小号完成签到,获得积分0
4秒前
巴啦啦小魔仙完成签到 ,获得积分10
5秒前
Maria发布了新的文献求助10
5秒前
clientprogram应助小王采纳,获得20
5秒前
共享精神应助jimmyk采纳,获得10
6秒前
qy完成签到,获得积分10
6秒前
JamesPei应助11采纳,获得10
6秒前
CNU_Voxel发布了新的文献求助10
6秒前
善良的灵羊完成签到 ,获得积分10
6秒前
动听锦程完成签到,获得积分20
7秒前
科研圣体发布了新的文献求助10
8秒前
8秒前
橘子发布了新的文献求助20
8秒前
Suica完成签到 ,获得积分10
9秒前
nanfeng完成签到,获得积分10
9秒前
张张完成签到,获得积分10
9秒前
Lucas应助扎心采纳,获得10
9秒前
Hello应助星移采纳,获得10
9秒前
9秒前
一言若完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
英俊的铭应助斯文的碧采纳,获得10
11秒前
shinysparrow应助半生半熟采纳,获得200
12秒前
12秒前
jinxichen完成签到,获得积分10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954042
求助须知:如何正确求助?哪些是违规求助? 3500003
关于积分的说明 11097832
捐赠科研通 3230521
什么是DOI,文献DOI怎么找? 1785972
邀请新用户注册赠送积分活动 869759
科研通“疑难数据库(出版商)”最低求助积分说明 801583