材料科学
聚苯胺
纳米复合材料
电介质
纳米线
复合材料
复合数
聚合物
聚合物纳米复合材料
电活性聚合物
纳米技术
光电子学
聚合
作者
Pengwei Liao,Huijian Ye,Lixin Xu
标识
DOI:10.1016/j.jcis.2024.03.151
摘要
The development of polymer film with large electrical displacement is essential for the applications of lightweight and compact energy storage. The dielectric diversity at interface of polymer composite should be addressed to realize the film capacitor with high energy density and dielectric reliability. In this work, poly(vinylidene fluoride-co-chlorotrifluoroethylene) (P(VDF-CTFE)) nanocomposite was incorporated by core–shell nanowire with covalent organic framework (COF) outer coating to alleviate the dielectric mismatch at interface. After the preparation of Ag nanowire through polyol reduction, polyaniline (PANI) and COF layers were sequentially deposited to construct core–shell Ag@polyaniline@covalent organic framework (Ag@PANI@COF) nanowire. According to the unique core–shell architecture, the COF framework is utilized to suppress the remanent polarization while high electrical displacement is preserved by the center Ag nanowire. The maximum energy density of 25.0 J/cm3 at 425 MV/m is obtained in 0.1 wt% stretched Ag@PANI@COF/P(VDF-CTFE) nanocomposite. The presence of core–shell nanowire depresses the distribution distortion of electric field and the diffusion of charge carriers under high field. This work demonstrates an effective method to develop the polymer film with large electrical displacement, and sheds a light on insightful exploration of interfacial polarized mechanism in polymer dielectric composite.
科研通智能强力驱动
Strongly Powered by AbleSci AI