G-K BertDTA: A graph representation learning and semantic embedding-based framework for drug-target affinity prediction

计算机科学 嵌入 图形 代表(政治) 人工智能 药品 药物靶点 机器学习 理论计算机科学 化学 药理学 医学 生物化学 政治学 政治 法学
作者
Xihe Qiu,Haoyu Wang,Xiaoyu Tan,Zhijun Fang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:173: 108376-108376 被引量:10
标识
DOI:10.1016/j.compbiomed.2024.108376
摘要

Developing new drugs is costly, time-consuming, and risky. Drug-target affinity (DTA), indicating the binding capability between drugs and target proteins, is a crucial indicator for drug development. Accurately predicting interaction strength between new drug-target pairs by analyzing previous experiments aids in screening potential drug molecules, repurposing them, and developing safe and effective medicines. Existing computational models for DTA prediction rely on strings or single-graph neural networks, lacking consideration of protein structure and molecular semantic information, leading to limited accuracy.Our experiments demonstrate that string-based methods may overlook protein conformations, causing a high root mean square error (RMSE) of 3.584 in affinity due to a lack of spatial context. Single graph networks also underperform on topology features, with a 6% lower confidence interval (CI) for activity classification. Absent semantic information also limits generalization across diverse compounds, resulting in 18% increment in RMSE and 5% in misclassifications within quantifications study, restricting potential drug discovery. To address these limitations, we propose G-K BertDTA, a novel framework for accurate DTA prediction incorporating protein features, molecular semantic features, and molecular structural information. In this proposed model, we represent drugs as graphs, with a GIN employed to learn the molecular topological information. For the extraction of protein structural features, we utilize a DenseNet architecture. A knowledge-based BERT semantic model is incorporated to obtain rich pre-trained semantic embeddings, thereby enhancing the feature information. We extensively evaluated our proposed approach on the publicly available benchmark datasets (i.e., KIBA and Davis), and experimental results demonstrate the promising performance of our method, which consistently outperforms previous state-of-the-art approaches. Code is available at https://github.com/AmbitYuki/G-K-BertDTA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hatoyama完成签到,获得积分10
刚刚
挡住所有坏运气888完成签到,获得积分10
刚刚
汉堡包应助JingP采纳,获得10
刚刚
orixero应助YYY采纳,获得30
1秒前
科研通AI5应助YYY采纳,获得10
1秒前
2秒前
852应助hyman1218采纳,获得20
2秒前
more发布了新的文献求助30
2秒前
亮晶晶给亮晶晶的求助进行了留言
3秒前
善学以致用应助MrTStar采纳,获得10
3秒前
兴奋长颈鹿完成签到,获得积分10
3秒前
轻松雨旋完成签到 ,获得积分10
3秒前
习习发布了新的文献求助50
3秒前
3秒前
雪花发布了新的文献求助10
4秒前
4秒前
4秒前
倪笙继完成签到,获得积分10
4秒前
Jhinnnn完成签到,获得积分10
4秒前
小野菌完成签到,获得积分10
5秒前
斯寜应助Rutherford采纳,获得10
5秒前
善学以致用应助Rutherford采纳,获得10
5秒前
6秒前
2010发布了新的文献求助10
6秒前
6秒前
lm发布了新的文献求助10
6秒前
baibai完成签到,获得积分10
7秒前
tuanhust应助小陈采纳,获得20
7秒前
zhengke924发布了新的文献求助30
7秒前
华仔应助haujiun采纳,获得10
7秒前
8秒前
任性冰凡完成签到 ,获得积分10
9秒前
平方发布了新的文献求助10
9秒前
我不爱池鱼应助小野菌采纳,获得10
9秒前
10秒前
sjdove发布了新的文献求助10
11秒前
11秒前
对方正在看文献完成签到,获得积分10
11秒前
情怀应助cattt采纳,获得10
12秒前
刺五加完成签到,获得积分10
12秒前
高分求助中
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Where and how to use plate heat exchangers 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
The Enzymes,Tyrosinase Volume 56 200
Cardiac arrhythmia classification of imbalanced data using convolutional autoencoder and LSTM techniques 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3702554
求助须知:如何正确求助?哪些是违规求助? 3252352
关于积分的说明 9879214
捐赠科研通 2964416
什么是DOI,文献DOI怎么找? 1625662
邀请新用户注册赠送积分活动 770185
科研通“疑难数据库(出版商)”最低求助积分说明 742869