The role of beat-by-beat cardiac features in machine learning classification of ischemic heart disease (IHD) in magnetocardiogram (MCG)

节拍(声学) 心跳 心脏病学 疾病 内科学 医学 人工智能 计算机科学 物理 声学
作者
S Senthilnathan,S. Shenbaga Devi,M. Sasikala,Santhosh Satheesh,Raja J. Selvaraj
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
卷期号:10 (4): 045007-045007 被引量:2
标识
DOI:10.1088/2057-1976/ad40b1
摘要

Abstract Cardiac electrical changes associated with ischemic heart disease (IHD) are subtle and could be detected even in rest condition in magnetocardiography (MCG) which measures weak cardiac magnetic fields. Cardiac features that are derived from MCG recorded from multiple locations on the chest of subjects and some conventional time domain indices are widely used in Machine learning (ML) classifiers to objectively distinguish IHD and control subjects. Most of the earlier studies have employed features that are derived from signal-averaged cardiac beats and have ignored inter-beat information. The present study demonstrates the utility of beat-by-beat features to be useful in classifying IHD subjects (n = 23) and healthy controls (n = 75) in 37-channel MCG data taken under rest condition of subjects. The study reveals the importance of three features (out of eight measured features) namely, the field map angle (FMA) computed from magnetic field map, beat-by-beat variations of alpha angle in the ST-T region and T wave magnitude variations in yielding a better classification accuracy (92.7 %) against that achieved by conventional features (81 %). Further, beat-by-beat features are also found to augment the accuracy in classifying myocardial infarction (MI) Versus control subjects in two public ECG databases (92 % from 88 % and 94 % from 77 %). These demonstrations summarily suggest the importance of beat-by-beat features in clinical diagnosis of ischemia.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
固态发布了新的文献求助10
刚刚
1秒前
1秒前
丘比特应助畅快的亿先采纳,获得10
1秒前
钻石棋完成签到,获得积分10
1秒前
柒辞发布了新的文献求助10
1秒前
善学以致用应助HJJHJH采纳,获得10
2秒前
syyyn完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
羊羊完成签到,获得积分10
3秒前
HeZheng发布了新的文献求助50
4秒前
butterflycat完成签到,获得积分10
4秒前
唐氏发布了新的文献求助10
4秒前
4秒前
4秒前
英子完成签到,获得积分10
5秒前
胡椰奶发布了新的文献求助10
5秒前
czz发布了新的文献求助10
5秒前
6秒前
励志小薛完成签到,获得积分20
6秒前
6秒前
Ava应助难得心亮采纳,获得10
6秒前
7秒前
7秒前
7秒前
羊羊发布了新的文献求助10
8秒前
sunyu发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
承诺信守发布了新的文献求助20
9秒前
miles驳回了烟花应助
10秒前
phoenix发布了新的文献求助10
10秒前
昭明发布了新的文献求助10
10秒前
11秒前
Otorhino发布了新的文献求助10
11秒前
jiuji发布了新的文献求助10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5353776
求助须知:如何正确求助?哪些是违规求助? 4486351
关于积分的说明 13966218
捐赠科研通 4386702
什么是DOI,文献DOI怎么找? 2410022
邀请新用户注册赠送积分活动 1402355
关于科研通互助平台的介绍 1376132