The role of beat-by-beat cardiac features in machine learning classification of ischemic heart disease (IHD) in magnetocardiogram (MCG)

节拍(声学) 心跳 心脏病学 疾病 内科学 医学 人工智能 计算机科学 物理 声学
作者
S Senthilnathan,S. Shenbaga Devi,M. Sasikala,Santhosh Satheesh,Raja J. Selvaraj
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
卷期号:10 (4): 045007-045007 被引量:2
标识
DOI:10.1088/2057-1976/ad40b1
摘要

Abstract Cardiac electrical changes associated with ischemic heart disease (IHD) are subtle and could be detected even in rest condition in magnetocardiography (MCG) which measures weak cardiac magnetic fields. Cardiac features that are derived from MCG recorded from multiple locations on the chest of subjects and some conventional time domain indices are widely used in Machine learning (ML) classifiers to objectively distinguish IHD and control subjects. Most of the earlier studies have employed features that are derived from signal-averaged cardiac beats and have ignored inter-beat information. The present study demonstrates the utility of beat-by-beat features to be useful in classifying IHD subjects (n = 23) and healthy controls (n = 75) in 37-channel MCG data taken under rest condition of subjects. The study reveals the importance of three features (out of eight measured features) namely, the field map angle (FMA) computed from magnetic field map, beat-by-beat variations of alpha angle in the ST-T region and T wave magnitude variations in yielding a better classification accuracy (92.7 %) against that achieved by conventional features (81 %). Further, beat-by-beat features are also found to augment the accuracy in classifying myocardial infarction (MI) Versus control subjects in two public ECG databases (92 % from 88 % and 94 % from 77 %). These demonstrations summarily suggest the importance of beat-by-beat features in clinical diagnosis of ischemia.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
sunshine发布了新的文献求助10
1秒前
布丁果酱巧克力完成签到,获得积分10
1秒前
1秒前
脑洞疼应助麻团儿采纳,获得10
2秒前
Xy完成签到,获得积分10
2秒前
芝士雪豹完成签到,获得积分10
2秒前
Snow发布了新的文献求助10
3秒前
3秒前
完美世界应助Darius采纳,获得10
3秒前
4秒前
4秒前
鲤鱼灵波完成签到,获得积分10
4秒前
阔达栾完成签到,获得积分20
6秒前
彪壮的刺猬完成签到,获得积分10
6秒前
6秒前
科目三应助木又权采纳,获得10
6秒前
JamesPei应助芝士雪豹采纳,获得10
6秒前
姜姜姜发布了新的文献求助10
7秒前
崔昕雨发布了新的文献求助10
8秒前
灯火完成签到,获得积分10
9秒前
鲤鱼灵波发布了新的文献求助10
9秒前
evermore发布了新的文献求助10
9秒前
9秒前
科研通AI5应助ytx采纳,获得10
10秒前
高锕666完成签到,获得积分10
10秒前
LM879应助CH711采纳,获得25
11秒前
11秒前
11秒前
12秒前
nn应助zhw采纳,获得10
13秒前
麻团儿发布了新的文献求助10
14秒前
小欧完成签到,获得积分10
14秒前
科研通AI5应助专一的无颜采纳,获得10
15秒前
15秒前
yzj关注了科研通微信公众号
16秒前
qqpp完成签到,获得积分10
17秒前
18秒前
justin发布了新的文献求助10
18秒前
柯北发布了新的文献求助10
19秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3490396
求助须知:如何正确求助?哪些是违规求助? 3077358
关于积分的说明 9148590
捐赠科研通 2769569
什么是DOI,文献DOI怎么找? 1519799
邀请新用户注册赠送积分活动 704314
科研通“疑难数据库(出版商)”最低求助积分说明 702113