Adaptive unified contrastive learning with graph-based feature aggregator for imbalanced medical image classification

计算机科学 新闻聚合器 人工智能 模式识别(心理学) 特征(语言学) 图形 特征学习 机器学习 理论计算机科学 语言学 操作系统 哲学
作者
Cong Cong,Sidong Liu,Priyanka Rana,Maurice Pagnucco,Antonio Di Ieva,Shlomo Berkovsky,Yang Song
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:251: 123783-123783 被引量:3
标识
DOI:10.1016/j.eswa.2024.123783
摘要

Medical image datasets are often imbalanced due to biases in data collection and limitations in acquiring data for rare conditions. Addressing class imbalance is crucial for developing reliable deep-learning algorithms capable of effectively handling all classes. Recent class imbalanced methods have investigated the effectiveness of self-supervised learning (SSL) and demonstrated that such learned features offer increased resilience to class imbalance issues and obtain much improved performances over other types of class imbalanced methods. However, existing SSL methods either lack end-to-end capabilities or require substantial memory resources, potentially resulting in sub-optimal features and classifiers and limiting their practical usage. Moreover, the conventional pooling operations (e.g., max-pooling, or average-pooling) tend to generate less discriminative features when datasets pose high inter-class similarities. To alleviate the above issues, in this study, we present a novel end-to-end self-supervised learning framework tailored for imbalanced medical image datasets. Our framework constitutes an adaptive contrastive loss that can dynamically adjust the model's learning focus between feature learning and classifier learning and a feature aggregation mechanism based on Graph Neural Networks to further enhance feature discriminability. We evaluate the effectiveness of our framework on four medical datasets, and the experimental results highlight its superior performance in imbalanced image classification tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
爆米花应助wenlong采纳,获得10
刚刚
董星星完成签到 ,获得积分10
刚刚
1秒前
add完成签到 ,获得积分10
1秒前
香蕉觅云应助cyy采纳,获得10
1秒前
柚子发布了新的文献求助10
1秒前
冷傲达完成签到,获得积分10
1秒前
llzzyyour发布了新的文献求助30
2秒前
情怀应助无奈的莫言采纳,获得10
2秒前
落寞怜雪完成签到,获得积分10
2秒前
啦啦啦发布了新的文献求助10
3秒前
4秒前
缘君发布了新的文献求助10
4秒前
4秒前
共享精神应助摸鱼咯采纳,获得10
5秒前
6秒前
NexusExplorer应助午休不采纳,获得10
6秒前
强子发布了新的文献求助10
7秒前
7秒前
一丁点完成签到,获得积分10
7秒前
咏君完成签到,获得积分10
8秒前
解觅荷发布了新的文献求助30
8秒前
CodeCraft应助文艺的紫萍采纳,获得10
8秒前
8秒前
8秒前
8秒前
呆萌安卉完成签到,获得积分10
9秒前
10秒前
10秒前
11秒前
zss发布了新的文献求助10
11秒前
rgaerva应助najibveto采纳,获得10
11秒前
顾矜应助呜呜呜发顶刊采纳,获得30
11秒前
11秒前
酷波er应助lijx采纳,获得10
12秒前
Ethanyoyo0917发布了新的文献求助10
12秒前
aaaa发布了新的文献求助10
12秒前
云康肖完成签到,获得积分10
12秒前
高分求助中
Genetics: From Genes to Genomes 3000
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3474762
求助须知:如何正确求助?哪些是违规求助? 3066860
关于积分的说明 9101503
捐赠科研通 2758260
什么是DOI,文献DOI怎么找? 1513498
邀请新用户注册赠送积分活动 699576
科研通“疑难数据库(出版商)”最低求助积分说明 699031