Enhancing Odor Analysis with Gas Chromatography–Olfactometry (GC-O): Recent Breakthroughs and Challenges

嗅觉测定 气味 气相色谱法 色谱法 化学 二维气体 环境化学 有机化学
作者
Mohamed A. A. Mahmoud,Yanyan Zhang
出处
期刊:Journal of Agricultural and Food Chemistry [American Chemical Society]
卷期号:72 (17): 9523-9554 被引量:3
标识
DOI:10.1021/acs.jafc.3c08129
摘要

Gas chromatography–olfactometry (GC-O) has made significant advancements in recent years, with breakthroughs in its applications and the identification of its limitations. This technology is widely used for analyzing complex odor patterns. The review begins by explaining the principles of GC-O, including sample preparation, separation methods, and olfactory evaluation techniques. It then explores the diverse range of applications where GC-O has found success, such as food and beverage industries, environmental monitoring, perfume and aroma development, and forensic analysis. One of the major breakthroughs in GC-O analysis is the improvement in separation power and resolution of odorants. Techniques like rapid GC, comprehensive two-dimensional GC, and multidimensional GC have enhanced the identification and quantification of odor-active chemicals. However, GC-O also has limitations. These include the challenges in detecting and quantifying trace odorants, dealing with matrix effects, and ensuring the repeatability and consistency of results across laboratories. The review examines these limitations closely and discusses potential solutions and future directions for improvement in GC-O analysis. Overall, this review presents a comprehensive overview of the recent advances in GC-O, covering breakthroughs, applications, and limitations. It aims to promote the wider usage of GC-O analysis in odor analysis and related industries. Researchers, practitioners, and anyone interested in leveraging the capabilities of GC-O in analyzing complex odor patterns will find this review a valuable resource. The article highlights the potential of GC-O and encourages further research and development in the field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SGOM发布了新的文献求助10
1秒前
黄大师完成签到,获得积分10
1秒前
小鱼发布了新的文献求助10
1秒前
贰陆发布了新的文献求助10
2秒前
KhalilHao发布了新的文献求助10
2秒前
秀丽钢笔发布了新的文献求助10
2秒前
luna发布了新的文献求助400
3秒前
英姑应助韭菜盒子采纳,获得10
3秒前
Tieaciaa完成签到,获得积分10
3秒前
zhang1完成签到,获得积分10
4秒前
shelter完成签到 ,获得积分10
4秒前
满眼月月发布了新的文献求助10
4秒前
aimee发布了新的文献求助10
4秒前
5秒前
ayu发布了新的文献求助10
5秒前
积极慕梅应助铲屎官采纳,获得10
5秒前
守护最好的坤坤完成签到,获得积分10
5秒前
7秒前
江峰发布了新的文献求助10
8秒前
情怀应助贼肉采纳,获得10
8秒前
小丘2024发布了新的文献求助30
9秒前
9秒前
zhang1发布了新的文献求助10
10秒前
jdz完成签到 ,获得积分10
10秒前
上官若男应助大力金针菇采纳,获得10
11秒前
11秒前
11秒前
不安青牛应助Brill采纳,获得10
12秒前
12秒前
12秒前
Tieaciaa发布了新的文献求助10
12秒前
13秒前
13秒前
Re_move完成签到,获得积分10
14秒前
14秒前
bkagyin应助笨笨垣采纳,获得10
15秒前
15秒前
Luke发布了新的文献求助30
15秒前
ding应助binghuu采纳,获得10
16秒前
16秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150027
求助须知:如何正确求助?哪些是违规求助? 2801108
关于积分的说明 7843272
捐赠科研通 2458621
什么是DOI,文献DOI怎么找? 1308555
科研通“疑难数据库(出版商)”最低求助积分说明 628553
版权声明 601721