PCG: A joint framework of graph collaborative filtering for bug triaging

计算机科学 接头(建筑物) 图形 理论计算机科学 建筑工程 工程类
作者
Jie Dai,Qingshan Li,Shenglong Xie,Daizhen Li,Hua Chu
出处
期刊:Journal of software [Wiley]
卷期号:36 (9)
标识
DOI:10.1002/smr.2673
摘要

Abstract Bug triaging is a vital process in software maintenance, involving assigning bug reports to developers in the issue tracking system. Current studies predominantly treat automatic bug triaging as a classification task, categorizing bug reports using developers as labels. However, this approach deviates from the essence of triaging, which is establishing bug–developer correlations. These correlations should be explicitly leveraged, offering a more comprehensive and promising paradigm. Our bug triaging model utilizes graph collaborative filtering (GCF), a method known for handling correlations. However, GCF encounters two challenges in bug triaging: data sparsity in bug fixing records and semantic deficiency in exploiting input data. To address them, we propose PCG, an innovative framework that integrates prototype augmentation and contrastive learning with GCF. With bug triaging modeled as predicting links on the bipartite graph of bug–developer correlations, we introduce prototype clustering‐based augmentation to mitigate data sparsity and devise a semantic contrastive learning task to overcome semantic deficiency. Extensive experiments against competitive baselines validate the superiority of PCG. This work may open new avenues for investigating correlations in bug triaging and related scenarios.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
flash完成签到,获得积分10
刚刚
Murphy发布了新的文献求助10
1秒前
糯米糍发布了新的文献求助10
1秒前
无情的匪完成签到 ,获得积分10
2秒前
荣铁身应助jing122061采纳,获得10
2秒前
hola发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
科研通AI2S应助敖江风云采纳,获得10
3秒前
yql发布了新的文献求助10
3秒前
Lance先生完成签到,获得积分10
4秒前
5秒前
6秒前
6秒前
共享精神应助科研通管家采纳,获得10
6秒前
田様应助科研通管家采纳,获得10
6秒前
毛豆应助科研通管家采纳,获得10
6秒前
Yziii应助科研通管家采纳,获得20
6秒前
毛豆应助科研通管家采纳,获得10
6秒前
6秒前
毛豆应助科研通管家采纳,获得10
7秒前
SciGPT应助科研通管家采纳,获得10
7秒前
霸气紫文应助llllllll采纳,获得10
7秒前
彳亍1117应助科研通管家采纳,获得10
7秒前
打打应助科研通管家采纳,获得10
7秒前
李健应助科研通管家采纳,获得10
7秒前
彳亍1117应助科研通管家采纳,获得10
7秒前
7秒前
所所应助ThoseRangers0624采纳,获得30
8秒前
傲娇文博发布了新的文献求助10
8秒前
9秒前
文与凯发布了新的文献求助10
12秒前
shen完成签到,获得积分10
12秒前
啾比文发布了新的文献求助10
13秒前
seven发布了新的文献求助10
13秒前
迪奥哒应助平常的毛豆采纳,获得10
13秒前
13秒前
呵呵哒完成签到,获得积分10
14秒前
16秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312306
求助须知:如何正确求助?哪些是违规求助? 2944981
关于积分的说明 8522255
捐赠科研通 2620755
什么是DOI,文献DOI怎么找? 1433035
科研通“疑难数据库(出版商)”最低求助积分说明 664824
邀请新用户注册赠送积分活动 650153