材料科学
陶瓷
烧结
断裂韧性
复合材料
碳化锆
抗弯强度
碳纤维
图层(电子)
相对密度
维氏硬度试验
锆
弹性模量
纳米压痕
相(物质)
碳化物
微观结构
冶金
复合数
化学
有机化学
作者
Chen Zeng,Mingyu Zhang,Wanxian Fang,Xiaodong Wang,Ping Xu,Peng Zhou,Xiangbao Lin,Zekai Zhang,Zhean Su,Qizhong Huang,Hanwei He
标识
DOI:10.1016/j.ceramint.2024.04.123
摘要
The typical high-density zirconium carbide (ZrC) ceramic requires high temperature and high pressure, leading to high manufacturing cost for complex shapes. Herein, nano-sized carbon layer encapsulated ZrC particles were pressureless sintered to achieve near-net preparation of high-density and complex-shape ZrC ceramic. The results indicate that reaction between carbon layer and the ZrCxOy phase in ZrC was improved because the carbon layer shortened the oxygen diffusion pathway. The oxygen content decreased from 3.52 wt% to 0.82 wt% while the thickness of carbon layer decreased from 4.0 nm to 0.75 nm after sintering at 1950 °C for 1 h. Furthermore, the migration of oxygen from ZrCxOy phase to the carbon layer effectively facilitate the formation and growth of the sintering neck. The resulting ZrC ceramic exhibited a high relative density of 92.3 % and excellent mechanical properties. The Vickers hardness, indentation fracture toughness, micro hardness, elastic modulus, and flexural strength were 17.3 ± 0.7 GPa, 4.0 ± 0.5 MPa m1/2, 22.2 ± 2.4 GPa, 429.9 ± 20.7 GPa, and 324 ± 8 MPa, respectively. This work provides a novel perspective to fabricate near-net, high-density and complex-shape ZrC ceramic at lower temperature without pressure.
科研通智能强力驱动
Strongly Powered by AbleSci AI