Kinetics and Mechanism Analysis of Advanced Oxidation Degradation of PFOA/PFOS by UV/Fe3+ and Persulfate: A DFT Study

过硫酸盐 全氟辛酸 化学 降级(电信) 激进的 环境化学 全氟辛烷 污染物 动力学 高级氧化法 光化学 磺酸盐 催化作用 有机化学 物理 量子力学 计算机科学 电信
作者
Yilei Lai,Ying Wang,Shu-Yu Zhang,Abing Duan
出处
期刊:Chemosphere [Elsevier]
卷期号:357: 141951-141951
标识
DOI:10.1016/j.chemosphere.2024.141951
摘要

UV/Fe3+ and persulfate are two promising advanced oxidative degradation systems for in situ remediation of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), yet a lack of comprehensive understanding of the degradation mechanisms. For the first time, we used density functional theory (DFT) to calculate the entire reaction pathways of the degradation of PFOA/PFOS in water by UV/Fe3+ and persulfate. In addition, we have deeply explored the different attack pathways driven by •OH and SO4−•, and found that SO4−• determines PFOA/PFOS to obtain PFOA/PFOS free radicals through single electron transfer to initiate the degradation reaction, while •OH determines the speed of PFOA/PFOS degradation reaction. Both degradation reactions were thermodynamically advantageous and kinetically feasible under calculated conditions. Based on the thermodynamic data, persulfate was found to be more favorable for the advanced oxidative degradation of Perfluorinated compounds (PFCs). Moreover, for SO4−• and •OH co-existing in the persulfate system, pH will affect the presence and concentration of these two types of free radicals, and low pH is not necessary for the degradation of PFOA/PFOS in the persulfate system. These results can considerably advance our understanding of the PFOA/PFOS degradation process in advanced oxidation processes (AOPs), which is driven by •OH and SO4−•. This study provides a DFT calculation process for the mechanism calculation of advanced oxidation degradation of other types of PFCs pollutants, hoping to elucidate the future development of PFCs removal. Further research should focus on determining the advanced oxidation degradation pathways of other types of PFCs, to support the development of computational studies on the advanced oxidation degradation of PFCs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助Zhong采纳,获得10
1秒前
1秒前
2秒前
Hu111发布了新的文献求助10
2秒前
开朗熊猫完成签到,获得积分10
3秒前
JAMA完成签到,获得积分10
4秒前
4秒前
小杨快看呀完成签到,获得积分10
5秒前
Orange应助wangg采纳,获得10
5秒前
MRCHONG完成签到,获得积分10
5秒前
哈哈哈哈发布了新的文献求助10
5秒前
poletar完成签到,获得积分10
5秒前
柠檬发布了新的文献求助10
5秒前
沉静的夜玉完成签到,获得积分10
5秒前
gaos发布了新的文献求助10
5秒前
MADKAI发布了新的文献求助10
6秒前
搬砖美少女完成签到,获得积分10
6秒前
6秒前
风起完成签到 ,获得积分10
6秒前
fifteen应助雪123采纳,获得10
6秒前
6秒前
香蕉觅云应助开朗熊猫采纳,获得10
7秒前
吱嗷赵发布了新的文献求助10
7秒前
zxyhhh完成签到 ,获得积分10
7秒前
霸气梦菲完成签到 ,获得积分10
7秒前
CodeCraft应助hhh采纳,获得10
7秒前
Zhaorf发布了新的文献求助10
8秒前
MRCHONG发布了新的文献求助10
8秒前
8秒前
Akim应助liuchao采纳,获得10
8秒前
动听的人英完成签到 ,获得积分10
8秒前
9秒前
coconut完成签到 ,获得积分10
9秒前
9秒前
脑洞疼应助Ll采纳,获得10
9秒前
9秒前
10秒前
Anne完成签到,获得积分10
10秒前
老迟到的凝丝完成签到,获得积分10
10秒前
金鸡奖发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672